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Introduction

We find ourselves in an era of great innovation in neuroscience that is yielding a constant stream 
of new molecular reporters of neural activity, novel microscope architectures, and new strategies 
for acquiring and analyzing large physiological, molecular, and anatomical datasets. How can these 
technologies be deployed in the service of making the highest-impact discoveries in both basic 
and applied neuroscience? With the help of a number of excellent faculty at the cutting edge of 
the invention and application of novel tools, we have designed this course to explore the basic 
principles underlying how such technologies work as well as practical considerations for adopting and 
integrating these methods into neuroscience. Our experts will cover a broad range of topics in their 
lectures, including the imaging of neural ensemble dynamics, multiscale optogenetic manipulation 
of circuits, high-resolution in vivo imaging, and multiscale structural and molecular phenotyping 
techniques. We will also review methods for extracting information from the large-scale functional, 
structural, and molecular imaging datasets that result. During the breakout sessions, our experts and 
teaching assistants (TAs) will discuss each technology in depth and go over detailed protocols, with 
the goal of enabling attendees to intelligently select the best technological path and rapidly adopt the 
technologies. We will also discuss examples that show how these technologies can be integrated into a 
streamlined experiment to study a given scientific question in the fundamental or translational realm. 

Our experts (listed in alphabetical order) include pioneers of optical methods for studying the brain, 
who will discuss the following topics: Ed Boyden will discuss how integrating optical tools for reading 
neural activity, writing neural activity, and mapping the connectivity of the brain might be unified to 
enable new kinds of structure–function linkage in neuroscience experimentation. Kwanghun Chung 
will discuss a series of technologies including CLARITY, SWITCH, MAP, stochastic electrotransport, 
SHIELD, and eFLASH (unpublished) that enable integrated multiscale imaging and molecular 
phenotyping of both animal tissues and human clinical samples. Valentina Emiliani will discuss the 
powerful intersection of three-dimensional (3D) parallel holographic illumination for the single-cell-
targeted optogenetic control of neurons, and the development of novel opsins with high-performance 
characteristics for mediating such control. She will explore the optical principles underlying such 
microscopy systems, as well as practical considerations governing the most suitable manipulation 
approaches for given problems. Elizabeth Hillman will discuss swept confocally aligned planar excitation 
(SCAPE) microscopy (a form of light-sheet microscopy that uses a single stationary objective lens to 
perform high-speed 3D microscopy of a diversity of neuroscientifically relevant systems) and wide-
field optical mapping (WFOM) for imaging neural activity and brain hemodynamics across the whole 
dorsal cortex in awake, behaving mice. Na Ji will present wavefront shaping techniques that enable 
the imaging of neural circuits with higher resolution, greater depth, and faster speed than before, 
including examples that enable synapse-level spatial resolution imaging throughout the entire depth of 
the cortex, and a volumetric microscopy strategy with a novel video rate (~30 Hz). Liam Paninski will 
discuss methods for extracting information from single-cell resolution calcium and voltage imaging 
data, including denoising, demixing, and deconvolving approaches to extract estimates of voltage 
and spiking activity from video data. Mark Schnitzer will present recent advances from his lab that 
are allowing the measurement of neural codes across large scales and optical readout of neural voltage 
oscillations. These advances include miniature microscopes, new forms of two-photon microscopy, 
and novel fiber optic methods for transmembrane electrical measurements performed optically 
(TEMPO). In the context of neural coding, Josh Vogelstein will discuss “connectome coding”—the 
characterization of the relationship between past environments and stimuli (even past experiences of 
ancestors encoded in the genome) and current neural connectivity.
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NOTESIn summary, our speakers will cover the dynamical readout, dynamical control, and the anatomical  
and molecular mapping of the brain, as well as the computational analysis of the datasets thus 
acquired. We anticipate that students will emerge from the course with not just new technical insights, 
but also the ability to think across technologies and scales to devise new approaches to confronting 
neuroscience questions.

Introduction
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NOTESIntroduction
At the core of many neuroscience questions—ranging 
from understanding how memories are encoded, 
to how neurons transform sensory inputs into 
motor outputs, to how emotions and decisions are 
implemented—is a need to understand how neural 
circuits are organized to yield complex emergent 
functions. Understanding the nature of brain 
disorders, and pointing the way to new therapeutics, 
is also increasingly demanding a knowledge of how 
brain cells, molecular cascades, and connections 
change in disease states. Ideally one would be able 
to map biomolecules such as neurotransmitters, 
receptors, and ion channels across the spatial 
extents of neurons and neural circuits. Traditional 
microscopes are limited by diffraction, and thus, 
specialized technologies have been required to 
perform imaging with nanoscale precision. Electron 
microscopy is capable of nanoscale resolution 
and has yielded many insights into the wiring 
diagrams of neural circuits (Kasthuri et al., 2015; 
Eichler et al., 2017). However, it typically yields 
little molecular information about the neurons in 
those circuits. Super-resolution light microscopy 
methods have powerfully revealed many molecular 
features of neurons at the nanoscale level (D’Este 
et al., 2015; He et al., 2016), but such methods are 
difficult to apply to extended three-dimensional 
(3D) specimens, such as neural circuits, owing to 
their speed and complexity. To address the need for 
a method of imaging extended 3D objects such as 
neural circuits, with molecular information and at 
nanoscale resolution, we recently developed a novel 
modality of imaging. In contrast to earlier methods of 
nanoscale imaging that magnify information emitted 
from a specimen, we discovered that it was possible 
to physically magnify the specimen itself (Chen et 
al., 2015).

In this new methodology, which we call expansion 
microscopy (ExM) (Figs. 1a–e), we synthesize a 
dense, interconnected web of a swellable polymer, 
such as sodium polyacrylate, throughout a preserved 
specimen, such as brain. The polymer is very 
dense, such that the distance between adjacent 
polymer threads is on the order of the dimension 
of a biomolecule. We anchor biomolecules such 
as proteins or RNA (or labels bound to those 
biomolecules, e.g., antibodies) to the polymer 
network via covalently binding anchoring molecules. 
We treat the specimen with heat, detergent, and/or 
enzymes to mechanically homogenize the specimen 
so that it can expand evenly, and then finally we add 
water. The swellable polymer absorbs the water and 
expands, bringing along the anchored biomolecules 

or labels (Fig. 1f). The net result is that biomolecules 
or labels that are initially localized within the 
diffraction limit of a traditional microscope are now 
separated in space so that they can be resolved. As a 
byproduct of this process, the specimen also becomes 
completely transparent, having become mostly water 
(Fig. 1g).

ExM builds from two sets of ideas that go back to the 
late 1970s and early 1980s. Around that time, the 
physicist Toyoichi Tanaka at MIT was creating and 
studying the physics of swellable gels (Tanaka et al., 
1980). He found that they could swell many orders of 
magnitude in volume in ways that could be described 
via phase transition mathematics. Around the same 
time, Peter Hausen and Christine Dreyer at the 
Max Planck Institute developed polymer hydrogel 
embedding of fixed tissues for the enhancement 
of imaging, synthesizing polyacrylamide networks 
throughout preserved specimens (Hausen and 
Dreyer, 1981). ExM fuses these two old concepts 
to enable physical magnification of specimens with 
nanoscale precision.

In this review, we first discuss the principles of how 
ExM works, covering some of the rapidly exploding 
family of protocols that have been invented in the 
past few years that are making ExM easier to use 
and more powerful. We then discuss some current 
applications in the field of neuroscience.

Principles of Expansion 
Microscopy
Since our discovery of ExM, accompanied by a proof-
of-concept protocol and validation data originally 
published in 2015 showing its high performance in 
cultured mammalian cells and mouse brain tissue 
(Chen et al., 2015), we have developed several 
variants specialized for simple visualization of 
proteins (Tillberg et al., 2016) and RNA (Chen 
et al., 2016) using off-the-shelf chemicals. These 
variants can expand cells and tissues to much greater 
extents than the original protocol (Chang et al., 
2017) and can easily be applied to human pathology 
specimens (Zhao et al., 2017). Several groups, 
including ours, have also shown the technology to 
work in a wide diversity of nonbrain tissues, both 
normal and diseased (e.g., cancer-containing) (Ku 
et al., 2016; Tillberg et al., 2016; Zhao et al., 2017), 
and even with pathogens like bacteria (Zhang 
et al., 2016). Many other groups have joined in 
independently creating ExM protocol variants as 
well, creating related protocols for the visualization 
of proteins and RNA (Truckenbrodt and Rizzoli, 
2014; Chozinski et al., 2016; Ku et al., 2016; Tsanov 

© 2018 Boyden
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NOTESet al., 2016; Kumar et al., 2017). Demonstrations of 
utility as well as scientific applications to a diversity 
of neuroscience questions have begun in a variety of 
species, ranging from planaria (Wang et al., 2016) to 
Drosophila (Mosca et al., 2017) to mouse (Crittenden 
et al., 2016; Sümbül et al., 2016) to nonhuman 
primate (Tillberg et al., 2016) to human (Deshpande 
et al., 2017). Rather than go through individual 
protocols one by one, as we have in previous reviews 
(Gao et al., 2017) and protocols papers (Asano et 
al., 2018), here we discuss the general principle of 
how ExM works, seeking a unified workflow picture 

(Figs. 1a–e). We will not go into detailed protocols 
in this paper; they are available on the Internet at 
ExpansionMicroscopy.org.

Anchoring biomolecules
First, biomolecules such as proteins (Tillberg et al., 
2016) or RNA (Chen et al., 2016), or labels that bind 
to these biomolecules, such as fluorescent antibodies 
(for proteins) (Chen et al., 2015; Tillberg et al., 2016) 
or fluorescent in situ hybridization (FISH) probes (for 
RNA) (Tsanov et al., 2016), are functionalized with 
chemical handles that allow them to be covalently 

© 2018 Boyden

Expansion Microscopy: Development and Neuroscience Applications

Figure 1. ExM workflow. a, Biomolecules, or labels highlighting biomolecules of interest, in fixed cells or tissues, are function-
alized with chemical handles (green, AcX binds proteins; purple, LabelX binds nucleic acids such as mRNA) that enable them to 
be (b) covalently anchored to a swellable polymer mesh (composed of cross-linked sodium polyacrylate) that is (c) evenly and 
densely synthesized throughout the specimen. d, The sample is mechanically homogenized by treatment with heat, detergent, 
and/or proteases. e, Adding water initiates polymer swelling, which results in biomolecules or labels being pulled apart in an even, 
isotropic manner, enabling nanoscale-resolution imaging (f) by conventional microscopes. g, Expansion significantly reduces 
scattering of the sample since the sample is mostly water. A 200-µm-thick fixed mouse brain slice is opaque before ExM, but 
after expansion is completely transparent. Scale bars: f, 5 mm. Panels f and g modified with permission from Chen et al. (2015),  
Figs. 1B, C; Suppl. Fig. 2. Copyright 2015, American Association for the Advancement of Science.
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NOTESanchored to the polymer (Figs. 1a,b). For example, 
applying a commercially available small molecule, the 
succinimidyl ester of 6-((acryloyl)amino)hexanoic 
acid (acryloyl-X, SE; abbreviated here as AcX), 
will equip amines on proteins (either endogenous 
proteins, genetically encoded fluorophores, or applied 
fluorescent antibodies) with an acrylamide functional 
group, which can be linked to a growing polyacrylate 
polymer chain made in a downstream step (Tillberg 
et al., 2016). Other groups have developed related 
anchoring strategies (Chozinski et al., 2016 and Ku 
et al., 2016). Applying a small molecule that contains 
an alkylating group that reacts to guanine, as well as 
an acrylamide group, easily made by mixing two off-
the-shelf chemicals (which we call LabelX), enables 
endogenous RNA (and DNA) to be equipped with 
a handle that can be linked to a growing polymer 
chain (Chen et al., 2016). Alternatively, applying 
FISH probes chemically pre-equipped with a similar 
linker will allow for these probes to be linked to the 
polymer (Tsanov et al., 2016).

Polymer embedding
Next, we synthesize a densely cross-linked sodium 
polyacrylate mesh throughout the specimen so that 
it permeates the cells, with polymer chains going 
between and around the biomolecules and/or labels 
(Figs. 1b,c). We do this by immersing the specimen in a 
solution containing sodium acrylate monomer (which 
can form long chains once triggered to polymerize) 
and cross-linking agents so that the final gel topology 
is a densely linked mesh. The small molecular weight 
of these building blocks enables their diffusion 
throughout cells and tissue in a short time, usually 
<0.5 h for a piece of brain tissue 100 μm thick. This 
incubation is performed at 4°C, allowing the building 
blocks to permeate the sample. Polymerization is 
initiated when the sample is transferred to a 37°C 
incubator. Within a few hours, a densely cross-linked 
polymer web is formed in the sample.

This polymerization process is a standard free-
radical polymerization process, not unlike the 
kind used to make polyacrylamide gels for 
electrophoresis, and is similar to the protocol 
of Hausen and Dreyer (1981). We use a vinyl 
addition free-radical polymerization of sodium 
acrylate monomers (along with the co-monomer 
acrylamide) and an N-N'-methylenebisacrylamide 
cross-linker, initiated by the generation of free 
radicals by a polymerization initiator (e.g., 
ammonium persulfate). We add the polymerization 
accelerator tetramethylethylenediamine as well as 
a polymerization inhibitor, 4-hydroxy-TEMPO, to 
tune the rate of polymerization so that monomers 

have time to diffuse throughout the sample before the 
reaction takes off. The resultant mesh is extremely 
dense; small-angle x-ray scattering data from similar 
polymers suggest that the mesh size (spacing between 
polymer chains) may be in the 1–2 nm range (Cohen 
et al., 1992). Such polymer spacing—smaller than 
many biomolecules themselves—suggests the 
possibility of immobilizing biomolecules to the 
polymer on an individual basis as well as the potential 
for isotropic expansion (and thus resolution) down 
to the 1–2 nm range (although the latter has not yet 
been experimentally realized).

Mechanically homogenizing  
the specimen
Next, the specimen—now permeated with swellable 
polymer, and with key biomolecules or labels bound 
to the polymer—is homogenized in its mechanical 
properties (Figs. 1c,d) so that the tissue components 
do not resist expansion. This can be performed by 
treatment with high temperatures and detergents (Ku 
et al., 2016; Tillberg et al., 2016) or with proteases 
that cleave proteins either broadly (Chen et al., 
2016; Chozinski et al., 2016; Tillberg et al., 2016) or 
specifically (Tillberg et al., 2016). In protocols using 
heat and detergents, the goal is to denature proteins 
so that they can be easily separated in the expansion 
step. In protocols using enzymes, the goal is either to 
destroy proteins that are no longer relevant to the 
later visualization steps or to cut them into smaller 
pieces that can be easily separated. For example, we 
and others have found that fluorescent antibodies and 
genetically encoded fluorescent proteins are resistant 
to proteinase K digestion at doses where most other 
proteins are broken down by proteinase K treatment 
(Chozinski et al., 2016; Tillberg et al., 2016). Thus, 
for specimens bearing such antibodies or fluorescent 
proteins, anchoring them to the permeating swellable 
hydrogel, followed by proteolytic destruction of  
the other proteins, enables mechanical 
homogenization while preserving the information 
to be observed (i.e., the antibody locations or the 
fluorescent protein locations).

Expanding the specimen
Finally, adding water (Figs. 1d,e) triggers the swelling 
of the sodium polyacrylate polymer so that the 
biomolecules or labels that are chemically linked 
to the polymer are pulled apart. Osmotic force 
draws water into the specimen–polymer composite, 
and the highly charged carboxyl groups along the 
polyacrylate backbone then further repel each other 
(a key advantage of using a polyelectrolyte gel). At 
that time, labels (e.g., fluorescent antibodies) (Ku et 
al., 2016; Tillberg et al., 2016) or FISH probes (Chen 

© 2018 Boyden
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NOTESet al., 2016) can be applied to label biomolecules 
that were anchored and expanded away from each 
other but that are not yet visualizable. Also at that 
time, signals can be amplified by any of a number of 
traditional methods. These include hybridization 
chain reaction amplification of FISH signals (Chen 
et al., 2016); adding DNA strands equipped with 
fluorophores (Chang et al., 2017); or using fluorescent 
streptavidin to add fluorophores to a previously 
anchored biotinylated probe (Chozinski et al., 2016). 
The original ExM protocol (Chen et al., 2015), as 
well as many of the follow-on protocols (Ku et al., 
2016; Tillberg et al., 2016; Zhao et al., 2017), reported 
4–4.5× linear expansion factors (~100× volumetric 
expansion) in pure water (Fig. 1f); expanding 
specimens in a low-osmolarity saline solution (helpful 
for maintaining hybridization of postexpansion probes 
applied to implement FISH) resulted in a ~3.3× linear 
expansion (Chen et al., 2016).

Results of the expansion process: 
ExM, proExM, and iExM
We and others extensively compared ExM-
expanded samples with pre-expansion samples 
imaged using traditional super-resolution means 
(e.g., SIM [structured illumination microscopy]) 
(Chen et al., 2015; Tillberg et al., 2016; Zhao et al., 
2017), STORM (stochastic optical reconstruction 
microscopy) (Chozinski et al., 2016; Chang et al., 
2017), as well as analysis of expanded biomolecular 
complexes that were previously characterized at 
a ground-truth nanostructural level (e.g., with 
electron microscopy) (Chen et al., 2015; Chang et 
al., 2017). As a result, we were able to show that 
the expansion process was isotropic, with distortion 
errors of only a few percent over length scales of 
tens to hundreds of micrometers (Chen et al., 
2015; Tillberg et al., 2016; Zhao et al., 2017). The 
excellent isotropy results from the design of the 
dense and highly cross-linked swellable polymer, as 
well as the mechanical homogenization. By analyzing 
biomolecular complexes of known structure (e.g., 
microtubules), we further estimated that current 
expansion processes might be introducing as little as 
5–10 nm of error in terms of fundamental resolution 
(Chang et al., 2017) (although pinpointing this 
number will require further study). As a result, a 
4.5× expansion will evenly expand specimens so that 
when imaged on, e.g., a confocal microscope with 
300 nm lateral resolution, the effective resolution 
will be 300 nm/4.5 ~ 70 nm.

A specimen can be expanded multiple times for 
even better effective resolution—a process we 
call iterative ExM (iExM) (Chang et al., 2017). 

A specimen is first expanded as in Figure 1, except 
using a chemically cleavable cross-linker rather than 
N-N'-methylenebisacrylamide to form the initial 
polyelectrolyte gel network. Such cross-linkers 
include N,N'-(1,2-dihydroxyethylene)bis-acrylamide 
(DHEBA) and N,N'-Bis(acryloyl)cystamine (BAC). 
After the first expansion is complete, a second 
swellable polymer (with an uncleavable cross-linker) 
is synthesized in the space opened up by the first 
expansion. The biomolecules or labels are transferred 
from the first gel to the second, the first gel is cleaved, 
and then the second gel is expanded. This double-
expansion process results in a linear expansion factor 
of ~4.5 × 4.5 ~ 20×, which would theoretically result 
in an effective resolution of 300 nm/20 ~ 15 nm, 
but in practice is slightly larger because of the size of 
the labels (i.e., antibodies, linkers) used to stain the 
specimen in the first place.

In summary, there are different ExM protocols that 
are optimal for different kinds of specimen and 
biological questions. The process of functionalizing 
the proteins or antibodies with AcX and expanding 
them away from each other we call protein retention 
ExM (proExM) (Tillberg et al., 2016). proExM can 
be performed by staining the biological samples 
with primary and secondary antibodies before 
expansion, or by expanding proteins away from each 
other before expansion and then adding antibodies 
afterwards. Other groups developed related strategies 
for proExM in parallel to us (Chozinski et al., 2016; 
Ku et al., 2016). The process of functionalizing RNA 
with LabelX and decrowding RNA molecules in a 
swellable hydrogel for later FISH visualization we 
call ExFISH (Chen et al., 2016).

Applications of ExM to 
Neuroscience
From our earliest paper on the subject, we showed 
that ExM could be used to visualize synaptic contacts 
between neurons in brain circuits, e.g., in the mouse 
hippocampus (Figs. 2a–d) (Chen et al., 2015). In 
particular, with ExM (Chen et al., 2015), proExM 
(Tillberg et al., 2016), or iExM (Chang et al., 2017), 
one can visualize synapses and synaptic proteins 
(e.g., excitatory and inhibitory neurotransmitter 
receptors, presynaptic scaffolding proteins, 
postsynaptic scaffolding proteins, neurotransmitter 
synthesis enzymes) in the context of many neurons 
in a connected circuit. This ability enables cellular 
and synaptic analyses to be made across scales in a 
neural network.

One interesting application of ExM is in the 
visualization of Brainbow (combinatorially 

© 2018 Boyden
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Figure 2. ExM of brain circuitry. a, Expanded mouse hippocampus, with yellow fluorescent protein (YFP)–expressing neurons 
(green) antibody stained for the postsynaptic protein Homer1 (magenta) and the presynaptic protein bassoon (blue). b, A hippo-
campal neuron from a piece of mouse brain tissue expanded and labeled as in (a), highlighting a single branch bearing multiple 
synapses. c, d, mouse cortex, expanded and labeled as in a, with a single synapse (box in c) highlighted in d. e, proExM and f, 
iExM of mouse hippocampus expressing Brainbow (combinatorially expressed fluorophores for randomly labeling neurons with 
different colors). g, ExFISH imaging of single RNA molecules (magenta) in mouse hippocampus with simultaneous visualization of 
protein (green, YFP). Left, Dlg4 mRNA (magenta) visualized simultaneously with YFP (green). Middle (i, ii), dendrites with spine-
localized Dlg4 mRNA highlighted with arrows. Right (iii, iv), dendrites with Camk2a mRNA highlighted with arrows. Scale bars: 
a, 100 µm; b, 13.5 µm x, 7.3 µm y, 2.8 µm z; c, 2.5 µm; d, 250 nm; e, 5 µm; g, white, 10 µm; blue, divided by the expansion 
factor of 3; i–iv, white, 2 µm; blue, divided by the expansion factor of 3. Panels a–d adapted with permission from Chen et al., 
2015, Figs. 3g,h, 4a,c. Copyright 2015, American Association for the Advancement of Science. Panel e adapted with permission 
from Tillberg et al. (2016), Fig. 3f. Copyright 2016, Springer Nature. Panel f modified with permission from Chang et al. (2017), 
Suppl. Fig. 12. Copyright 2017, Nature Publishing Group. Panel g adapted with permission from Chen et al. (2016), Figs. 3i–k. 
Copyright 2016, Nature Publishing Group.
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NOTESexpressed, genetically encoded fluorophore-labeled 
neural circuitry) (Cai et al., 2013) (via ~70 nm 
effective resolution proExM in Fig. 2e and Tillberg et 
al., 2016; and via ~25 nm effective resolution iExM 
in Fig. 2f and Chang et al., 2017). Such volumes 
can be imaged on ordinary confocal microscopes, 
making neural circuit mapping into a democratized 
activity requiring hardware of the kind accessible to 
most groups. A recent algorithmic and experimental 
study suggests that automated tracing of neural 
morphologies in expanded brain circuits containing 
neurons labeled with Brainbow may be possible 
(Sümbül et al., 2016).

proExM has successfully revealed synaptic 
architectures in mouse striatal circuitry (Crittenden 
et al., 2016) as well as in the Drosophila brain (Mosca 
et al., 2017) and zebrafish brain (Freifeld et al., 2017). 
proExM has also proven useful for characterizing 
astrocytic gap junctions near blood vessels in human 
epilepsy patient brain specimens (Deshpande et al., 
2017). Furthermore, proExM has helped perform a 
study in the planarian Schmidtea mediterranea that 
revealed a new nonneural cell type the authors 
proposed to be a planarian glial cell (Wang et al., 
2016).

Mapping messenger RNAs (mRNAs) and other 
nucleic acids with subsynaptic precision in intact 
neural circuits is important for confronting many 
questions related to how gene expression is regulated 
in a spatial manner, throughout neural circuits, in 
development, plasticity, and disease. ExFISH has 
been used to visualize the location and identity of 
single mRNA molecules, with nanoscale precision, 
in brain circuits with covisualization of proteins (Fig. 
2g) (Chen et al., 2016).

Specimen expansion, in addition to providing 
nanoscale resolution across extended 3D specimens, 
enables two other key features. One is that, after 
expansion, the final tissue–gel composite is ~99% 
water, making the resulting specimens transparent and 
essentially optical-aberration free (Fig. 1g) (Chen et 
al., 2015). This makes light-sheet imaging into a very 
fast nanoscale-resolution modality, as we have shown 
by applying light-sheet imaging to expanded samples 
(Chen et al., 2016), thereby enabling multiple-order-
of-magnitude acceleration over earlier nanoscale-
resolution imaging technologies.

A second benefit of ExM is the decrowding of the 
biomolecules or labels as they are pulled apart during 
the swelling, which creates room around biomolecules 
for amplification and analysis of chemical reactions. 
For example, the hybridization chain reaction 

(Choi et al., 2014) results in many fluorophores 
being targeted to a single biomolecule via a self-
assembling DNA complex. Molecular decrowding 
makes more room for these large complexes, which 
otherwise might overlap or compete against each 
other (Chen et al., 2016). Molecular decrowding 
could also enable epitopes, which may be concealed 
in protein complexes, to be revealed by separating 
proteins from one another (Tillberg et al., 2016). 
Finally, by creating room around biomolecules for 
well-controlled performance of useful reactions, 
decrowding may help in the future to support 
better performance of analytical reactions, such as 
in situ sequencing (Lee et al., 2014), multiplexed 
antibody staining (Jungmann et al., 2014), and 
multiplexed hybridization (Moffitt et al., 2016). For 
example, the Zhuang lab has recently shown ExM to 
decrowd mRNAs sufficiently to improve the yield 
of their multiplexed error-robust fluorescence in 
situ hybridization (MERFISH) protocol. This yields 
an exponential amount of information in a linear 
number of hybridization steps, with RNA density 
more than 10-fold higher than previously reported 
(Wang et al, 2018).

Common Problems and Strategies 
to Overcome Them
As with any new technology, early adopters will 
need to confront potential problems in order to 
deploy ExM in their scientific field. Early adoption 
also presents opportunities for refinement and 
innovation, as various groups have published papers 
applying or validating ExM in new contexts like 
Drosophila (Cahoon et al., 2017; Mosca et al., 2017), 
zebrafish (Freifeld et al., 2017), and human brain 
(Deshpande et al., 2017). One common problem 
that people encounter early in their experiences with 
ExM samples is the fragility of the expanded samples. 
We recommend storing, transporting, and handling 
samples in the unexpanded state as much as possible 
and expanding them in water at the latest feasible 
moment. Paintbrushes and spatulas can be used to 
handle gels when unexpanded, but expanded gels 
require care to transport, for example, being carried 
on coverslips that evenly support the gel (Gao et al., 
2017). Storing samples in the compact state may also 
help preserve fluorescence for longer periods than 
in the expanded state. In an unbuffered solution 
like pure water (as used in the expanded state), 
fluorophores can deteriorate faster than if samples are 
stored in PBS or another buffered salt solution in the 
compact state (Gao et al., 2017).

Another common problem is that expanded samples, 
being volumetrically diluted by a hundredfold or 
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NOTESmore, can sometimes appear dim when imaged with 
a microscope, and/or be hard to find because they 
are so transparent. Thus, amplifying the brightness 
of labels (as described earlier) can be very helpful. 
It is important to validate antibodies in unexpanded 
samples to ensure that they work, since the dilution 
effect of expansion will compound any antibody 
errors with additional difficulty of visualization. 
If antibodies are to be applied after expansion, 
it is important not to use proteases that destroy 
epitopes but instead to use denaturing conditions 
to mechanically homogenize cells and tissues (Ku et 
al., 2016; Tillberg et al., 2016). If antibodies are to 
be applied pre-expansion, it is important not to use 
cyanine dyes on secondary antibodies, since they will 
be destroyed during the polymerization process. (For 
a list of alternative dyes that work well in ExM, see 
Tillberg et al., 2016.)

To facilitate imaging, it can be helpful to trim the 
gel to the smallest size feasible and to shape the 
boundary of the gel (e.g., by cutting the edge in a 
pattern) so that its shape will tell you its orientation 
(Synthetic Neurobiology Group, 2017). When 
imaging a subregion, it is also very helpful to image 
samples both before and after expansion with a low-
magnification microscope to understand where you 
are in the sample. It can be helpful to immobilize 
expanded samples in agarose or to mount them on 
a sticky surface (e.g., a polylysine-coated coverslip 
or slide) to prevent them from drifting during 
imaging (Gao et al., 2017). For details on how to 
mount samples for stable imaging in a diversity of 
microscope settings and other helpful tips, see Gao 
et al. (2017) and up-to-date protocols at our website: 
ExpansionMicroscopy.org.
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NOTESIntroduction
Human organs such as the brain comprise vast 
numbers of molecules, cell types, and intricate 
tissue organizations. Understanding the complex 
interactions of these components is essential for many 
fields of biology and often requires high-dimensional 
information across many scales. Although it is 
desirable to obtain such information from the same 
tissue owing to large individual variations, combined 
measurement of many molecular and anatomical 
traits remains an unmet goal in biology despite the 
remarkable success of current pioneering methods.

Rapidly evolving tissue transformation and three-
dimensional (3D) imaging approaches may enable 
holistic phenotyping of intact brains (Chung et al., 
2013; Chung and Deisseroth, 2013; Renier et al., 
2014; Susaki et al., 2014; Chen et al., 2015; Kim et al., 
2015; Murray et al., 2015; Richardson and Lichtman, 
2015; Ku et al., 2016; Pan et al., 2016; Tillberg et 
al., 2016; Murakami et al., 2018; Park et al., 2018). 
The objective of this chapter is to introduce a series 
of technologies (e.g., SWITCH, MAP, stochastic 
electrotransport, and SHIELD) that allow integrated 
multiscale imaging and molecular phenotyping of 
both animal tissues and human clinical samples. 
We discuss how these methods engineer (1) the  
physicochemical properties of brain tissues,  
(2) molecular interactions, and (3) molecular transport 
all together to achieve integrated brainwide molecular 
phenotyping at unprecedented speed and resolution. 
To enable immediate and broad adaptation of the 
technologies, we have made all associated reagents 
and protocols available to the scientific community. 
Detailed protocols and resources are freely available 
online at http://www.chunglabresources.org.

Engineering Physicochemical 
Properties of Tissue
SHIELD
SHIELD (Stabilization to Harsh conditions via 
Intramolecular Epoxide Linkages to prevent 
Degradation) is a versatile tissue-processing method 
that simultaneously preserves key molecular 
information—nucleic acids, protein fluorescence, and 
protein immunoreactivity—in cleared intact tissues 
by using a polyfunctional flexible epoxide crosslinker 
(Park, 2018). This chemical modifier performs 
several tasks: it renders individual biomolecules 
highly resistant to denaturation, protects their 
physicochemical properties (such as protein 
fluorescence) while minimally altering interactions 
with molecular probes (including antibodies), and 
secures biomolecules to their physiological location 

(Fig. 1). By screening a library of polyepoxides, 
we identified a structurally unique polyfunctional 
epoxide that shields the activity of fluorescent 
proteins against harsh environmental stressors. Based 
on physicochemical characterization and molecular 
dynamics calculations, we attributed the crosslinker’s 
protective mechanism to the formation of multiple 
flexible intramolecular bonds that enhance the 
stability of proteins’ tertiary structure. When applied 
to tissue, SHIELD enables uniform, organwide 
preservation of proteins and transcripts, their probe-
binding properties, and fluorescent protein activity 
without loss of tissue architecture.

SHIELD and MAP
Combining SHIELD with MAP (Magnified Analysis 
of the Proteome) (Ku et al., 2016) enables integrated 
circuit mapping at single-cell resolution (Fig. 2). 
To test this possibility, we genetically targeted 
parvalbumin (PV)–positive (PV+) neurons in 
the globus pallidus externa (GPe) (GPe-PV+) by 
injecting AAV-hSyn-DIO-mRuby2-Synaptophysin-
EGFP virus into a PV-Cre transgenic mouse brain, 
which labeled neurites with mRuby2 and presynaptic 
boutons with EGFP (enhanced green fluorescent 
protein). We SHIELD-processed and cleared the 
intact mouse brain hemisphere with stochastic 
electrotransport (SE, discussed below) and imaged 
it using a light-sheet microscope to map the global 
projection pattern of GPe-PV+ neurons. GFP-labeled 
synaptic terminals of the mRuby2+ cells were found 
in the GPe, subthalamic nucleus (STN), substantia 
nigra reticulata (SNr), globus pallidus interna (GPi), 
nucleus reticularis thalami (nRT), caudate putamen 
(CPu), and parafascicular nucleus (PF).

To further investigate the PV-GPe circuit, we dissected 
a 1-mm-thick tissue block that included the GPe, STN, 
nRT, GPi, and SNr. We then performed fluorescent in 
situ hybridization (FISH) followed by immunostaining 
to map GAD1 (glutamate decarboxylase 1) messenger 
RNA (mRNA) and calretinin protein. Finally, the 
tissue was expanded using SHIELD-MAP for super-
resolution volumetric imaging. To characterize the 
long-range output of a GPe-PV+ neuron at single-cell 
resolution, we reconstructed the axonal arborization 
of an mRuby2+ neuron. The exceptional preservation 
of fluorescent protein (FP) signal and enhanced 
resolution obtained with SHIELD-MAP enabled 
reliable reconstruction of individual axons and their 
presynaptic boutons. The resulting multidimensional 
axogram revealed that the reconstructed neuron is 
possibly connected to four neurons in the GPe, two 
neurons in the nRT, and 13 neurons in the SNr 
through axosomatic synapses. SHIELD is a highly 
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Figure 1. SHIELD preserves FP signals, proteins, transcripts, and their probe-binding affinities. a–c, Representative FP signals of 
brain slices subjected to thermal treatment after being processed with fixatives (PFA, GA, or P3PE). Brain slices expressing EGFP 
(Thy1::EGFP M-line), yellow fluorescent protein (YFP) (Thy1::YFP H-line), or tdTomato (PV-Cre / loxP-tdTomato) were used. Scale 
bars: a, 1 mm; b, c: 100 µm. d, FP signal retention after the same heat treatment in brain sections preserved with difference 
fixatives and CLARITY (a tissue-clearing technique that transforms tissue into a tissue–hydrogel hybrid). e, GFP signal retention 
from M-line slices after exposure to organic solvents and detergents. MeOH, methanol; THF, tetrahydrofuran; TBA, tert-butyl 
alcohol; BABB, one part benzyl alcohol and two parts benzyl benzoate; TX100, Triton-X100; BDEA, butyldiethanolamine. N = 3. 
f, Fluorescence images of neurons virally labeled with RV-hSyn-mOrange-p2A-PSD95-GFP in GA and SHIELD tissue. Scale bars: 
100, 10, and 1 µm (left to right). g, Fluorescence intensity profiles of PSD95-GFP and mOrange signals along the dotted lines in 
f. h, Tissue autofluorescence from various excitation wavelengths (405, 488, 561, and 630 nm excitation; emission detection 
window: +5 nm to +65 nm of the excitation wavelength). N = 3. i, Representative images comparing the immunofluorescence 
of key cell-type antibodies in various tissue-processing methods. Scale bar, 20 µm. FoxP2, forkhead box protein P2; CR, calretinin; 
PV, parvalbumin; NeuN, neuronal nuclei; GFAP, glial fibrillary acidic protein; Iba1, ionized calcium-binding adapter molecule 1; 
PFA, paraformaldehyde; GA, glutaraldehyde; PACT, passive CLARITY technique; iDISCO, immunolabeling-enabled three-dimen-
sional imaging of solvent-cleared organs. The same imaging and display settings were used for each antibody. j, Signal-to-noise 
ratios (SNRs) of immunofluorescence in i normalized to the SNR of PFA control. N = 3. k, l, SHIELD preserves endogenous YFP 
fluorescence during multiple rounds of immunostaining and destaining. k, Overlay of multiround immunostained images. Scale 
bar, 100 µm. l, Images from individual rounds. Scale bar, 100 µm. m, Representative heat maps showing FISH of total mRNAs by 
(dT)50-Cy3 in cleared PFA, EDC-CLARITY, GA, and SHIELD tissues. Scale bar, 100 µm. n, Fluorescence intensities of dT50-Cy3 FISH 
normalized to the signal of uncleared PFA tissues (Control). N = 3. o, Three-color FISH hybridization chain reaction (HCR) against 
vGluT1, vGluT2, and GAD1 mRNAs in SHIELD tissue. Scale bars, 1 mm (left); 50 µm (right). p, Dual labeling of c-Fos protein and 
mRNA in SHIELD tissue from a mouse foot-shocked (FS) twice at 35 min and 5 min before sacrifice. Scale bars, 10 µm. q, Uniform 
preservation of transcripts in a SHIELD-processed, SE-cleared brain hemisphere. A 1-mm-thick coronal block from the middle of 
the hemisphere was cut and stained with dT50-Cy3 FISH. Scale bar, 2 mm (left); 100 µm (right). Error bars indicated SEM. One-way 
ANOVA; Tukey’s multiple comparison test; *p < 0.05, **p < 0.01, ***p < 0.001. Reprinted with permission from Park et al. 
(2018), Fig. 2. Copyright 2018, Springer Nature.
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Figure 2. SHIELD combined with MAP and SE enables integrated circuit reconstruction at single-cell resolution. a, Pipeline. b, 3D 
rendering of the intact mouse hemisphere showing brainwide projection patterns of labeled GPe-PV+ neurons. c, Representative 
images of labeled neurons and their presynaptic terminals in GPe, STN, SNr, and GPi. d, Total pixel intensity of mRuby2 and EGFP in 
seven brain regions to which the labeled GPe-PV+ neurons project. e, 3D rendering of labeled GPe-PV+ neuronal circuitry with the 
overlaid axon trace of a single labeled neuron. Insets, Sample images from multiround staining and multiscale imaging. Scale bar, 1 mm 
(50 µm for insets). f, Reconstructed axon arborization of the neuron and its downstream targets. Each circle represents a neuron. The 
number of putative axosomatic boutons is marked inside each circle. g, Images of the circuit components from multiround imaging. 
Arrows indicate the target cell body. Scale bars, 20 µm. h, Reconstructed putative axosomatic connectivity. Ramified axons (gray) and 
EGFP-positive presynaptic boutons (blue) are segmented. Scale bars, 20 µm. i, Convergence of two axon collaterals branched remotely 
from the target cell body. j–k, Venn diagram showing three different neuronal populations in the SNr. j, GAD1+/Syp-EGFP−, GAD1+/
Syp-EGFP+ and GAD1−/Syp-EGFP+ k, CR+/Syp-EGFP−, CR+Syp-EGFP+ and CR−/Syp-EGFP+ Unbiased sampling was used. l, Relationship 
between the number of axosomatic boutons and the axonal branching events of the reconstructed PV-mRuby2+ neuron near the 
target neuronal soma. Linear regression, R2 = 0.55; F-test = 17.40; p = 0.0009. m, Distribution of the number of putative axosomatic 
boutons. Reprinted with permission from Park et al. (2018), Fig. 6. Copyright 2018, Springer Nature.
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NOTESversatile platform built on a rationally designed 
crosslinker with controllable molecular interactions, 
and it should find wide application in the study of 
complex biological systems.

MAP
MAP (Ku et al., 2016) linearly magnifies organ 
architecture fourfold while preserving its 3D proteome 
organization. The magnified proteome library 
preserves both fine subcellular details and organ-scale 
intercellular connectivity. We achieved multiplexed 
labeling and imaging of a tissue’s magnified proteome 
using off-the-shelf antibodies with an 82% success rate 
(100/122). With MAP, sample size can be reversibly 
modulated to accommodate proteomic imaging of 
interregional connections as well as fine synaptic 
architectures in the brain. Integrated multiscale 
mapping of the proteome within an intact tissue may 
enable new approaches for studying the organization 
and function of complex biological systems.

Engineering Chemical Interactions: 
SWITCH
SWITCH stands for system-wide control of 
interaction time and kinetics of chemicals (Murray 
et al., 2015). It tightly controls a broad range of 
chemical reactions in tissue processing to achieve 
uniform sample treatment regardless of tissue size 
and type. SWITCH dynamically modulates chemical 
reaction kinetics to synchronize the reaction time 
between molecules throughout the system. This 
strategy enables all endogenous molecular targets in 
a large intact tissue to experience similar reaction 
conditions (time and concentration). As a result, 
large tissue can be uniformly processed.

We use a set of buffers in SWITCH. A SWITCH-
On buffer facilitates chemical reactions between 
exogenous chemicals and endogenous biomolecules, 
and a SWITCH-Off buffer suppresses the reaction. 
SWITCH-mediated fixation transforms tissue into 
a heat-resistant and chemical-resistant hybrid while 
preserving tissue architecture, native molecules, and 
their antigenicity to a degree suitable for multiplexed 
proteomic imaging. For example, in SHIELD, 
we homogenously disperse the flexible epoxide 
crosslinker in tissue by suppressing epoxide reactivity 
in SWITCH-Off condition (4°C, pH 7.4) before 
initiating samplewide crosslinking by moving the 
sample to SWITCH-On condition (37°C, pH 10). 
This method does not require perfusion and is thus 
applicable to both animal and large human samples. 
In molecular labeling of the processed samples, 
SWITCH controls probe-target binding kinetics to 
improve probe penetration depth and the uniformity 

of molecular labeling. This method is simple, 
passive, and does not require any special equipment 
or reagents. Using SWITCH, we demonstrated that 
22 rounds of molecular labeling datasets of a single 
banked postmortem human tissue can be precisely 
coregistered at single-cell resolutio.

Engineering Chemical Transport: 
Stochastic Electrotransport
The transport of molecules is fundamental to life as 
well as many engineered systems. Brownian diffusion 
is among the most universal transport mechanisms, 
controlling a broad range of chemical and biological 
phenomena. In this type of transport, particles are 
dispersed via random thermal motion. Such passive 
diffusion is a simple and effective transport strategy 
for small-length-scale applications, but it becomes 
increasingly inefficient for macromolecules in a 
large-scale sample with a dense mesh architecture 
(e.g., biological tissues). For decades, the slow nature 
of Brownian diffusion has fundamentally limited the 
application of many powerful techniques in biology 
and medicine (e.g., immunohistology) to small-scale 
samples.

External forces can enhance transport if the 
surrounding matrix remains stable. For instance, 
hydrodynamic pressure can generate a convective flow 
in a highly porous matrix. However, for nanoporous 
soft meshes (e.g., biological tissues), the high pressure 
that is required to generate flow damages matrices. 
A stationary electrical gradient can enhance the 
transport of ions in a nanoporous matrix, but it also 
irreversibly deforms the matrix if the mesh is made 
of soft and charged polymeric materials. Therefore, a 
fundamentally new strategy is required to selectively 
boost the transport of freely moving ions without 
damaging the surrounding charged matrix.

To meet this challenge, we developed a new transport 
concept we termed “stochastic electrotransport” 
(Kim et al., 2015). Unlike a static electric field, a 
stochastically changing electric field induces an 
electrophoretically driven random walk of ions. 
We demonstrated theoretically and experimentally 
that during SE, the mean displacement of an ion 
scales quadratically with the product of the ion’s 
electromobility and the field strength, whereas in 
electrophoretic one-dimensional transport, it scales 
linearly with the product of the two parameters. 
This unique quadratic dependence selectively boosts 
migration of only freely moving ions with high 
electromobility while suppressing the movement of a 
charged matrix with low electromobility. Therefore, 
the charged matrix remains virtually stationary while 
unbound ions disperse rapidly and selectively at a 
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NOTESspeed that is several orders of magnitude faster than 
Brownian diffusion. We have demonstrated that 
SE enables complete clearing or labeling of intact 
animal organs within 1 to 3 days (versus weeks to 
months using traditional methods).

Conclusions
In this tutorial, we have demonstrated that we can 
engineer (1) the physicochemical properties of brain 
tissues, (2) molecular interactions, and (3) molecular 
transport all together to achieve integrated brainwide 
molecular phenotyping at unprecedented speed and 
resolution. SHIELD combined with SWITCH can 
effectively preserve endogenous molecules, protein 
fluorescence, and tissue architecture uniformly in both 
intact mouse hemispheres and long-banked clinical 
samples. SHIELD combined with pioneering genetic 
and viral tools may serve as a powerful platform for 
multiscale interrogation of neural circuits. In addition, 
we demonstrated that global projection patterns can 
be mapped brainwide using SHIELD followed by 
SHIELD-MAP for super-resolution imaging of regions 
of interest in the same brain to reconstruct individual 
axonal projections and synaptic structures. Integration 
of SHIELD with SE and light-sheet microscopy enables 
unbiased organwide visualization of FP and endogenous 
proteins. The pipeline enables complete processing of 
an intact mouse brain hemisphere from preservation, 
clearing, and immunolabeling to imaging within  
10 days. These technologies synergize with a wide range 
of existing technologies and will enable new integrated 
approaches for studying complex biological systems. 
Detailed protocols and resources are freely available 
online at http://www.chunglabresources.org.
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Introduction
Light patterning through spatial light modulators 
(SLMs), whether they modulate amplitude or 
phase, is gaining an important place within optical 
methods used in neuroscience, especially for 
manipulating neuronal activity with optogenetics. 
The ability to selectively direct light in specific 
neurons expressing an optogenetic actuator, rather 
than in a large neuronal population within the 
microscope field of view, is becoming attractive for 
studies that require high spatiotemporal precision 
for perturbing neuronal activity in a microcircuit. 
Computer-generated holography (CGH) is a phase-
modulation light-patterning method that provides 
significant advantages in terms of spatial and 
temporal resolution of photostimulation. It offers 
flexible three-dimensional (3D) light illumination 
schemes that are easily reconfigurable, is able to 
address a significant excitation field simultaneously, 
and is applicable to both visible and infrared light 
excitation. Its implementation complexity depends 
on the level of accuracy that a certain application 
demands: CGH can stand alone or be combined 
with temporal focusing (TF) in two-photon (2P) 
excitation schemes, producing depth-resolved 
excitation patterns that are robust to scattering. 
In this chapter, we present an overview of CGH’s 
properties regarding spatiotemporal resolution 
and penetration depth, particularly focusing on 
its applications in optogenetics. The coordinated 
activation of neuronal microcircuits is proposed to 
regulate brain functioning in health and disease. A 
common approach to investigate the mechanisms 
that reduce network complexity is to outline 
microcircuits and infer their functional role by 
selectively modulating them. Combined with 
suitable illumination approaches, today optogenetics 
offers the possibility of achieving such selective 
control with its ever-growing toolbox of reporters 
and actuators.

Wide-field single-photon (1P) illumination was 
the first method employed to activate optogenetic 
actuators (Boyden et al., 2005; Nagel et al., 2005; 
Adamantidis et al., 2007; Aravanis et al., 2007; 
Gradinaru et al., 2007; Zhang et al., 2007; Huber et 
al., 2008; Anikeeva et al., 2012) and continues to be 
widely used for neural circuit dissection (Makinson 
et al., 2017; Weible et al., 2017). Using genetic 
tools, including viruses, Cre-dependent systems, and 
transgenic lines to target optogenetic actuators to 
neurons of interest, investigators have used wide-
field illumination to dissect correlation and causal 
interactions in neuronal subpopulations both  
in vitro (Petreanu et al., 2007, 2009; Joshi et al., 2016; 

Morgenstern et al., 2016; Tovote et al., 2016) and  
in vivo (Adesnik et al., 2012; Atallah et al., 2012; Lee 
et al., 2012; Tovote et al., 2016). With this approach, 
population specificity is achieved through genetic 
targeting, and temporal resolution and precision 
are limited only by the channels’ temporal kinetics 
and cell properties (e.g., opsin expression level and 
membrane potential). Suitable combinations of opsins 
have also enabled independent optical excitation of 
distinct cell populations (Klapoetke et al., 2014). 
The primary drawback of wide-field illumination 
is that all opsin-expressing neurons are stimulated 
simultaneously, and thus, wide-field schemes lack the 
temporal flexibility and spatial precision necessary to 
mimic the spatiotemporal distribution of naturally 
occurring microcircuit activity.

Replacing 1P visible light excitation with 2P near-
infrared light illumination enables improved axial 
resolution and penetration depth (Denk et al., 1990). 
However, the small single-channel conductance of 
actuators such as channelrhodopsin-2 (ChR2) (40–
80 fS) (Feldbauer et al., 2009), combined with the 
low number of channels excitable within a femtoliter 
2P focal volume, makes it difficult to generate 
photocurrents strong enough to bring a neuron to 
the firing threshold. This challenge has prompted 
the development of 2P-stimulation approaches that 
increase the excitation volume.

2P-stimulation approaches for optogenetics can be 
grouped into two main categories: scanning and 
parallel excitation techniques. 2P laser scanning 
methods use galvanometric mirrors to quickly scan 
a laser beam across several positions covering a 
single cell or multiple cells (Rickgauer and Tank, 
2009; Andrasfalvy et al., 2010; Prakash et al., 
2012). Parallel approaches enable investigators to 
simultaneously cover the surface of a single cell or 
multiple cells using either beams with low numerical 
aperture (NA) (Andrasfalvy et al., 2010; Rickgauer 
et al., 2014) or CGH (Bègue et al., 2013; Chaigneau 
et al., 2016; Ronzitti et al., 2017a) and generalized 
phase contrast (Papagiakoumou et al., 2010). In this 
chapter, we will focus on the description of CGH 
and its application to optogenetic neuronal control. 
A broader overview of the different approaches to 
2P optogenetics can be found in Oron et al. (2012), 
Vaziri and Emiliani (2012), Packer et al. (2013), 
Bovetti and Fellin (2015), Ronzitti et al. (2017b), 
and Chen et al. (2018).

Computer-Generated Holography
The experimental scheme for CGH (Fig. 1a) was 
originally proposed for generating multiple optical 
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gradient traps (also called optical tweezers) (Curtis 
et al., 2002). It consists of computing with a Fourier 
transform–based iterative algorithm (Gerchberg and 
Saxton, 1972) the interference pattern or phase 
hologram that back-propagating light from a defined 
target (input image) will form with a reference beam 
on a defined “diffractive” plane. Next, the computer-
generated phase hologram is converted into a gray-
scale image and then addressed to a liquid-crystal 
(LC) matrix SLM, which is placed at the diffractive 
plane. In this way, each pixel of the phase hologram 
controls (in proportion to the corresponding 
gray-scale level) the voltage applied across the 
corresponding pixel of the LC matrix so that the 
refractive index, and thus the phase modulation, of 
each pixel can be precisely modulated. As a result, 
the calculated phase hologram is converted into a 
pixelated refractive screen, and illumination of the 
screen with the laser (or reference) beam will generate 
a light pattern at the objective focal plane that 
reproduces the desired template. This template can 
be any kind of light distribution in two dimensions 
(2D) or 3D, ranging from diffraction-limited spots or 
larger spots (with a larger surface area) to arbitrary 
extended light patterns.

Precise manipulation of neuronal activity via 
holographic light patterns requires an accurate 

control of the spatial colocalization between the 
generated light pattern and the target. To do so, 
a few years ago we proposed a way to generate the 
template for calculating phase holograms on the 
base of the fluorescence image (Lutz et al., 2008). 
Briefly, a fluorescence image of the preparation is 
recorded and used to draw the excitation pattern. In 
this way, it is possible to generate a holographic laser 
pattern reproducing the fluorescence image or a user-
defined region of interest (Fig. 1b) (Oron et al., 2012; 
Papagiakoumou, 2013).

In CGH, the pixel size and number of pixels of 
the LC-SLM define the lateral and axial field of 
excitation (FOE). The maximum lateral FOE 
(FOExy) is expressed as follows (Golan et al., 2009; 
Yang et al., 2011; Hernandez et al., 2016):

 (1)

where λ is the excitation wavelength, d is the LC-
SLM pixel size, n is the medium refractive index, and 
feq is the equivalent focal lens, including all the lenses 
located between the LC-SLM and the sample plane.

Within this region, the diffraction efficiency, δ(x,y), 
defined as the intensity ratio of the incoming to the 

Holographic Illumination for Two-Photon Optogenetics

Figure 1. Computer-generated holography. a, In CGH, an arbitrary light distribution (target) is used as the input source for a 
Fourier transform–based iterative algorithm to calculate the interference pattern or phase hologram, which, after interfering 
with the reference beam (laser) at the diffraction plane, would reproduce the target at the imaging plane. The calculated phase 
hologram is addressed to an LC-SLM. After diffraction through the LC-SLM, the reference beam plane will generate a light distri-
bution (illumination pattern) at the objective focal plane, reproducing the original target shape. b, For precise light stimulation, 
the whole fluorescence image or a defined region of interest can be used to select the excitation targets that will be sent to 
the iterative algorithm for producing the corresponding phase hologram. Reprinted with permission from Papagiakoumou et al. 
(2018), Fig. 1. Copyright 2018, Springer Science+Business Media LLC.
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diffracted beam, depends on the lateral spot-position 
coordinates, x, y:

  (2)

with b being a proportionality factor considering the 
frontal window LC-SLM reflectivity. Consequently, 
δ(x, y) reaches its maximum value at the center of 
the FOExy and its minimum value at the borders of 
the FOExy. Nowadays, existing LC-SLM devices are 
able to reach diffraction efficiency values of ~95% 
at the center and ~38% at the border—values close 
to the theoretical limits. The remaining light is 
distributed among the higher-diffraction orders and 
an undiffracted component (so-called zero-order), 
resulting in a tightly focused spot at the center of 
the FOE. Depending on the applied phase profile, 
the intensity of the zero-order spot can reach 25% of 
the input light. This value can be reduced to 2–5%, 

regardless of the projected hologram, by performing 
ad hoc precompensation of the LC-SLM-phase pixel 
values (Ronzitti et al., 2012). Although the focused 
zero-order spot can be removed from the FOE by 
adding a block or diaphragm at a plane conjugated to 
the sample plane (Polin et al., 2005; Zahid et al., 2010), 
doing so limits the accessible FOE. Alternatively, 
the intensity of the zero-order component can be 
strongly reduced by using a cylindrical lens placed in 
front of the LC-SLM, which stretches the zero-order 
spot into a line (Hernandez et al., 2014). A phase 
hologram compensating for the cylindrical lens effect 
is then addressed onto the LC-SLM in addition to 
the original phase hologram generating the target 
spot so that the holographic pattern shape is restored 
(Fig. 2). Importantly, the use of cylindrical lenses 
enables removing the zero-order component from 
the FOExy without using intermediate blocks, thus 
enabling access to the entire FOE.

Holographic Illumination for Two-Photon Optogenetics

Figure 2. Zero-order spot removal using cylindrical lenses. Comparison between a CGH image of the Eiffel Tower (a) without 
and (b) with a single 1 m cylindrical lens, aberrating the zero-order in the optical path. c, 2P normalized fluorescence intensity 
(NFI) profiles along the lines drawn in a, red, and b, blue. Dotted lines represent the signal of solid lines multiplied by 10 for 
a better view. d, Phase mask reproducing the image of the Eiffel Tower at the focal plane of the objective, calculated with a 
Gerchberg–Saxton algorithm. e, Conjugated cylindrical Fresnel lens hologram added to that of d for aberration compensation. 
f, Final corrected phase mask addressed to the SLM. Reprinted with permission from Hernandez et al. (2014), Fig. 2. Copyright 
2014, The Optical Society.
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Intensity inhomogeneities due to diffraction efficiency 
are a limiting factor for applications requiring lateral 
displacement of a single spot or multiple spots within 
the FOE. Therefore, we have proposed approaches 
that compensate for these inhomogeneities by 
keeping the spot intensity constant, independently 
on the lateral position. In the case of single-spot 
generation, homogenization of light distribution 
can be achieved by projecting one or multiple spots 
outside the FOExy and tuning their brightness or 
size to compensate for the intensity loss due to 
the diffraction efficiency curve. Thus, a constant 
intensity value in the excitation spot is maintained 
for each position of the FOExy. The extra spots can 
be blocked by adding an external diaphragm placed at 
an intermediate imaging plane of the optical system, 
conjugated to the sample plane (Hernandez et al., 
2016). For multispot excitation, one can use graded 
input images to generate brighter spots into regions 
that border the FOE, where the diffraction efficiency 
is lower, and dimmer spots into the central part of the 
FOE, where diffraction efficiency is higher (Conti et 
al., 2016; Koshelev et al., 2016; Shemesh et al., 2017). 
Graded input patterns can also be used to compensate 
for sample inhomogeneity. For example, they can 
be applied to equalize photocurrents from cells with 
different expression levels (Conti et al., 2016).

CGH pattern generation also suffers from “speckle”: 
undesired intensity variations of high spatial frequency 
within the same spot. This is an intrinsic limitation 
of CGH that results from phase discontinuities 
at the sample plane inherent in the Gerchberg–
Saxton algorithm (Gerchberg and Saxton, 1972), 
the most commonly used Fourier transform–based 
iterative algorithm. Speckle fluctuations reach 20% 
in 1P CGH and 50% in 2P CGH implementations. 
Different approaches have been proposed to reduce 
or eliminate speckles, each with their advantages and 
limitations. Temporally averaging speckle patterns 
can be achieved by mechanically rotating a diffuser 
(Papagiakoumou et al., 2008) or by generating 
multiple shifted versions of a single hologram (Golan 
and Shoham, 2009). Also, smoother intensity 
profiles can be created using ad hoc algorithms that 
remove phase vortices in the holographic phase 
mask (Guillon et al., 2017). Alternatively, the 
interferometric method known as generalized phase 
contrast (GPC) (Glückstad, 1996) has proven to 
generate speckle-free 2D extended shapes with the 
necessary precision, e.g., to precisely reproduce the 
shape of a thin dendritic process (Papagiakoumou 
et al., 2010). Recently, researchers have shown that 
GPC can also be extended to 3D by combining it with 
CGH, an approach called Holo-GPC (holographic 

generalized phase contrast) (Bañas and Glückstad, 
2017). In this case, a holographic phase mask is used 
to multiplex a GPC pattern in different lateral or 
axial positions.

Spatial resolution
In general, the lateral spatial resolution of an optical 
microscope is defined by the maximum spatial 
frequency that can be transferred through the focusing 
objective. This frequency is related to the maximum 
angle of convergence of the illumination rays, i.e., 
to the objective angular aperture. Consequently, in 
CGH, the smallest obtainable illumination pattern is 
a diffraction-limited Gaussian spot whose full width 
at half maximum (FWHM) is equal to Δx ≈ λ/NAeff, 
where NAeff is the effective NA (with NAeff < NA 
for an underfilled pupil). Along with the concept 
of resolution, it is useful to introduce the notion 
of spatial localization accuracy, i.e., the precision 
with which one can target a certain position in 
the sample plane (Schmitz et al., 2005). Spatial 
localization accuracy is ultimately related to the 
minimum displacement, Δδmin, of the illumination 
spot that is possibly achieved by spatially modulating 
the phase of the incoming light beam. In particular, 
an illumination spot can be laterally shifted by a 
certain step Δδ by applying at the objective’s back 
aperture a prism-like phase modulation of slope  
α ≈ Δδ⁄fobj , where fobj is the objective focal length. 
The spatial localization accuracy therefore depends 
on the SLM’s ability to approximate a prism-like 
phase shift (Schmitz et al., 2005). This ability is 
ultimately limited by the number of pixels, N, 
and gray levels, g, of the SLM. More precisely, the 
theoretical upper limit for the minimum step Δδmin is 
inversely proportional to N ∙ g (Schmitz et al., 2005; 
Engström et al., 2008).

In CGH, axial resolution scales linearly with the 
lateral spot size, and inversely with the objective NA. 
To be precise, if the holographic spot radius is defined 
as s, and the speckle size is σ ≈ λ/(NA  8 ∙ ln (2)), 
then the 1P and 2P axial resolution is twice the axial 
distance, Δz, at which the 2P intensity drops at 50% 
FWHM, where Δz is given by:

 (3)

with zR = π ∙ s2/2λ. This means that a spot size of 
10 μm wide would correspond to an axial resolution 
of 14 μm using an NA = 0.9 objective and 2P 
illumination at 900 nm (Hernandez Cubero, 2016). 
The corresponding illumination volume would 
be roughly the size of a cell soma (yellow circle, 
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Fig. 3a), thereby enabling (in principle) optical 
photostimulation with single-cell precision.

Optical stimulation with near cellular resolution 
was indeed achieved in freely moving mice using 1P 
holographic stimulation (Szabo et al., 2014). Briefly, 

holographic light patterning coupled to a fiber 
bundle with a micro-objective at the end was used to 
photostimulate and monitor functional responses in 
cerebellar molecular layer interneurons coexpressing a 
calcium indicator (GCaMP5-G) and an opsin (ChR2-
tdTomato) in freely behaving mice (Fig. 4). These 
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Figure 3. Axial propagation of holographic beams. Experimental y–z and x–y intensity cross-sections for holographic beams 
generated to produce at the objective focal plane (a) a circular spot or (b) multiple spots of 10 µm diameter. The y–z cross-section 
in b is shown along the white dashed-dotted line. The yellow circle in both panels approximates the size of a cell soma. Integrated-
intensity profiles of y–z cross-sections around the circular spot (a) and in an area covering three spots (dashed yellow line) of the 
multispot light configuration (b) are shown on the top of the panels. For comparison, the FWHM of the axial integrated-intensity 
profile of the single 10 µm spot is ~14 µm. Scale bars, 10 µm. Reprinted with permission from Papagiakoumou et al (2018), Fig. 4. 
Copyright 2018, Springer Science+Business Media LLC.

Figure 4. Holographic photostimulation and functional imaging in freely behaving mice. a, Schematic of the holographic fiberscope 
comprising two illumination paths: one for photoactivation with CGH, including an LC-SLM, and a second for fluorescence imaging, 
including a digital micromirror device (DMD). Backward fluorescence was detected on a scientific complementary metal oxide semicon-
ductor (sCMOS) camera. Both paths were coupled to the sample using a fiber bundle attached to a micro-objective (MO). L, Lens; 
BS, beam splitter; F, emission filter; O, microscope objective. b, Left, Calcium signal triggered by photoactivation (blue line; photo-
stimulation power, 50 mW/mm2) with a 5-µm-diameter holographic spot placed on the soma of a ChR2-expressing cell recorded in 
a freely behaving mouse coexpressing GCaMP5-G and ChR2 in cerebellar molecular layer interneurons. Right, Structure illumination 
image recorded in a freely behaving mouse and showing molecular layer interneuron somata and a portion of a dendrite (inset). 
Scale bar, 10 µm. c, Top, The same photoactivation protocol as in (a) was repeated every 30 s for 15 min (photostimulation power,  
50 mW/mm2; imaging power, 0.28 mW/mm2). Bottom, Expansion of the top trace showing that spontaneous activity frequently occurs 
between evoked transients. Adapted with permission from Szabo et al. (2014), Figs. 1A, 5C, 6A, and 6C. Copyright 2014, Elsevier.
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experiments showed that optical photostimulation 
could achieve near cellular resolution using sparse 
staining and sparse distribution of excitation spots. 
However, a similar approach would not reach the same 
precision if applied to multisite photostimulation of a 
densely labeled neuronal population; as seen in Figure 3b,  
the axial resolution would quickly deteriorate using 
both 1P and 2P excitation.

A few years ago, we demonstrated that micrometer-
size optical sectioning, independent of the lateral 
spot dimension (Papagiakoumou et al., 2008), can 
be achieved by combining CGH and GPC with TF. 
Briefly, the technique of TF, originally demonstrated 
to perform wide-field 2P microscopy (Oron et al., 
2005; Zhu et al., 2005), uses a dispersive grating 
to diffract the different frequencies comprising the 
ultrashort excitation pulse in different directions. 
The various frequencies thus propagate toward the 
objective focal plane at different angles so that the 
pulse is temporally smeared above and below the 
focal plane, which remains the only region irradiated 
at peak-power efficiency for 2P excitation.

TF and CGH can be combined by adding an LC-SLM 
and a focusing lens (L1) to the conventional TF optical 
path so that the TF grating lies at the focal plane of 
L1 and is illuminated by the holographic pattern. A 
second telescope, made by a second lens (L2) and the 
objective, conjugates the TF plane with the sample 
plane, enabling the generation of spatiotemporally 
focused patterns (Fig. 5a). Notably, TF enables 
decoupling lateral and axial resolution so that the 
same axial resolution is achieved independently 
on the lateral extension of the excitation spot  
(Figs. 5b,c) (Papagiakoumou et al., 2008). Also, 
using TF combined with low-NA Gaussian beams, 
GPC and CGH has enabled efficient 2P optogenetic 
excitation with micrometer axial resolution and 
millisecond temporal resolution both in vitro and  
in vivo (Andrasfalvy et al., 2010; Papagiakoumou et 
al., 2010; Bègue et al., 2013; Rickgauer et al., 2014).

Although wavefront shaping and TF enable precise 
sculpting of the excitation volume, the ultimate 
spatial precision achievable for 2P optogenetics 
also depends on the opsin distribution within the 

Holographic Illumination for Two-Photon Optogenetics

Figure 5. a, Schematic representation of an experimental setup combining CGH with TF. G, grating; L1 and L2, lenses; BFP, Back 
focal plane; FFP, Front focal plane. b–c, Experimental y–z and x–y intensity cross-sections for temporally focused holographic beams 
generated to produce at the objective focal plane a circular spot (b) or multiple spots of 10 µm diameter (c). y–z cross-section in (c) 
is shown along the white dashed-dotted line. Yellow circles approximate the size of a cell soma. Top panels, Integrated-intensity 
profiles of y–z cross-sections around the circular spot (b) and in an area covering three spots (dashed yellow line) of the multispot 
light configuration (c). For comparison, the FWHM of the axial integrated-intensity profile of the single 10 µm spot is ~9 µm. 
Thanks to TF, the axial confinement is well preserved even when multiple spots are projected close together. Scale bars: b–c, 10 
µm. Reprinted with permission from Papagiakoumou et al (2018), Fig. 5. Copyright 2018, Springer Science+Business Media LLC.
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expressing neurons: opsins are efficiently trafficked to 
the membranes of cell soma, as well as to dendrites 
and axons. Consequently, illumination with a 
theoretically micrometer-sized focal volume could 
depolarize all cells whose processes (dendrites and 
axons) cross the target excitation volume, even if 
their somata were located micrometers away from the 
illumination spot (Fig. 6). This activation crosstalk 
needs to be carefully considered, for example, 
when performing connectivity experiments. It 
could prevent investigators from distinguishing 
whether a postsynaptic response, recorded while 
photostimulating a presynaptic cell, originated from 
a true connection between the two cells rather than 
from direct stimulation of postsynaptic dendrites 
or axons crossing the photostimulation volume. 
Reaching a true cellular resolution for exciting 
densely labeled samples requires combining optical 
focusing with molecular strategies that enable 
confined opsin expression in restricted cell areas (e.g., 
soma or axonal hillock) (Baker et al., 2016; Shemesh 
et al., 2017; Mardinly et al., 2018).

Temporal resolution
Parallel light illumination enables simultaneous 
excitation of all selected targets. Temporal resolution is 

therefore limited only by the illumination time needed 
to evoke, e.g., an action potential (AP), a detectable 
Ca2+ response, or a defined behavioral change (Oron et 
al., 2012; Vaziri and Emiliani, 2012). The illumination 
time ultimately depends on opsin conductance, virus 
promoter, serotype, titer, kinetics parameters, and 
excitation power. In the following discussion, we will 
specifically review how the opsin kinetics parameters 
determine temporal resolution, temporal precision 
(temporal jitter), and AP spiking rate.

Light illumination of an opsin-expressing cell with a 
hundred-millisecond illumination pulse generates a 
characteristic photocurrent trace (Fig. 7a) in which 
one can distinguish an activation, inactivation, and 
deactivation part characterized by temporal decay: 
τon, τinact, and τoff, respectively. The overall kinetics of 
the current, as well as its ratio of peak to plateau, 
can be qualitatively reproduced using a three-state 
or four-state model (Nagel et al., 2003; Hegemann 
et al., 2005; Nikolic et al., 2006, 2009; Williams et 
al., 2013) (Fig. 7b). The four-state model is more 
accurate for reproducing the biexponential decay of 
the light-off current and the photocurrent voltage 
dependence (Williams et al., 2013). A qualitative 
value for the characteristic temporal decay, τon, 
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Figure 6. 2P holographic photostimulation of ReaChR-expressing cells in vivo. The opsin ReaChR was expressed in neurons at 
layer 2/3 of mouse visual cortex by injecting the viral vector rAAV1-Ef1α-ReaChR-P2A-tdTomato. Positive neurons expressing 
ReaChR (left panel, fluorescent cells in the 2P fluorescence image) in isoflurane-anesthetized mouse were photostimulated with 
a 12-µm-diameter excitation spot for 5 ms illumination duration at 0.15 mW/µm2 and λ = 1030 nm (left panel, red shaded area). 
APs were induced by holographic excitation of one positive cell soma (spot 1), whose membrane potential was measured using 
2P-guided whole-cell recording (trace 1). Subthreshold or suprathreshold activation was induced in the patched cell (traces 2–8) 
upon holographic excitation of spots targeting the cell’s soma at radial distances from spot 1 of 12 µm (spot 2), 12 µm (spot 3),  
24 µm (spot 4), 12 µm (spot 5), 67.6 µm (spot 6), 40.4 µm (spot 7), and 35 µm (spot 8). Activation was caused by exciting 
opsin channels distributed into axon, proximal, and distal dendrites of the patched neuron. Scale bar, 40 µm; calibration: 20 mV,  
100 ms. Reprinted with permission from Papagiakoumou et al (2018), Fig. 7. Copyright 2018, Springer Science+Business Media LLC.
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τinact, and τoff, can be directly extracted by assuming 
a monoexponential process for the three transitions. 
In Table 1, we report the values of τon (at saturation), 
τinact, and τoff, measured under 2P holographic 
illumination of Chinese hamster ovary (CHO) cells 
expressing a fast (Chronos) (Klapoetke et al., 2014), 
an intermediate (CoChR) (Klapoetke et al., 2014), 
and a slow (ReaChR) (Lin et al., 2013) opsin.

Chronos CoChR ReaChR

τon (ms) 0.73 2.4 8

τinact (ms) 9.3 200 443

τoff (ms) 4.2 31 94

Table 1. Kinetics parameters for different opsins. Chronos,  
CoChR, and ReaChR were expressed in CHO cells and  
excited using 2P (λ = 950 nm; pulse duration 4 s for 
ReaChR and CoChR, and 1 s for Chronos; power = 0.05–1.1  
mW/µm2). The current curves at saturation (the power at 
which the peak current reaches 90% of its maximum) were 
fitted using a monoexponential decay for the three transitions: 
activation, inactivation, and deactivation. The corresponding 
decay times, τon (ms), τoff (ms), and τinact (ms), are reported 
in the table and correspond to power close to saturation (0.86 
mW/µm2, 0.54 mW/µm2, and 0.28 mW/µm2 for Chronos,  
CoChR, and ReaChR, respectively). Adapted with permission from  
A. Picot, M. Gajowa, et al., unpublished observations.

In practice, the efficient current integration obtained 
under parallel photostimulation enables using 
photostimulation pulses much shorter than the 
channel rise time. This enables in vitro AP generation  
at millisecond temporal resolution (Fig. 8a) 
(Chaigneau et al., 2016; Ronzitti et al., 2017a) and 

submillisecond temporal jitter (Chaigneau et al., 
2016; Ronzitti et al., 2017a; Shemesh et al., 2017), 
independently on τon. Conversely, the value of τoff 
has a key role in limiting the achievable spiking rate, 
as shown in Figure 8b, which displays in vitro spike 
generation under 2P holographic illumination of 
interneurons (layer 2/3 of visual cortex) expressing 
different opsins (Chronos, ReaChR, and CoChR). Fast 
opsins, such as Chronos, enabled generation of light-
evoked AP trains at ≤100 Hz spiking rate (Ronzitti et 
al., 2017a), whereas ReaChR, with a ~50 times slower 
τoff, enabled a light-evoked firing rate limited to ~35 
Hz (~15 Hz for pyramidal cells) (Chaigneau et al., 
2016). Photostimulation of interneurons expressing 
CoChR, which has an intermediate value of τoff (~30 
ms), could still generate light-evoked trains at 100 Hz, 
but temporal precision and fidelity were progressively 
lost across the train.

Interestingly, the efficient current integration that 
is achievable with parallel holographic illumination 
enables reliable AP generation with millisecond 
temporal resolution and submillisecond precision. 
This system uses, at depths of ~100 µm, excitation 
densities <1 mW/µm2 or 100 µW/µm2 with a 
conventional mode-locked high-repetition-rate  
(80 MHz) laser oscillator or a low-repetition-rate 
(500 kHz) amplifier, respectively (Chaigneau et al., 
2016; Ronzitti et al., 2017a; Shemesh et al., 2017).

Penetration depth
As previously described, TF coupled with CGH or 
GPC enables micrometer-range axial confinement. 
A further advantage of this approach is that it 
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Figure 7. ChR2 photocurrent and photocycle. a, Typical photocurrent trace of a CHO cell expressing ChR2 under visible light 
illumination (1P excitation) for 100 ms. b, Top, schematic of the three-state model comprising the closed/ground state, the open 
state, and the closed/desensitized state. Bottom, Schematic of the four-state model with two closed and two open states. hυ, 
incident photon. For a detailed description of the model, see Nikolic et al. (2009). Reprinted with permission from Papagiakoumou  
et al (2018), Fig. 8. Copyright 2018, Springer Science+Business Media LLC.
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enables robust light propagation through scattering 
media (Bègue et al., 2013; Papagiakoumou et al., 
2013; Hernandez et al., 2016). Scattering deviates 
the original photon trajectory, thus deforming the 
excitation spot shape at the focal plane. For light 
illumination with diffraction-limited spots, this 
translates mainly into occurrence of aberrations 
and loss of axial and lateral resolution. Moreover, 
scattered photons do not contribute to signal arising 
from the focal volume, which translates into loss of 
light intensity (Booth et al., 2012).

For large illumination areas, the presence of 
scattering also generates speckles in the excitation 
spot due to the random interference between ballistic 
and scattered photons (Fig. 9a). A few years ago, we 
demonstrated that TF, combined with both CGH 
(Bègue et al., 2013) and GPC (Papagiakoumou 
et al., 2013), reduces this effect because scattered 
photons have a lower probability of interfering with 
ballistic photons (Fig. 9a). Light propagation of 
patterns generated using CGH (Bègue et al., 2013) 
and GPC (Papagiakoumou et al., 2013) through 

cortical brain slices or zebrafish larvae (Hernandez 
et al., 2016) have revealed robust conservation of 
lateral shape and axial resolution up to depths twice 
the scattering length (Fig. 9b), thereby enabling in-
depth optogenetic stimulation (Papagiakoumou et 
al., 2013).

Multicell volumetric photoactivation
Parallel approaches present the great advantage 
of minimizing illumination time compared with 
their scanning counterparts. For example, the total 
illumination time for scanning activation, TI.scan, 
roughly equals the illumination time per spot (tdwell) 
multiplied by the number of scanned positions 
and the number of targets. In contrast, the total 
illumination time for parallel approaches, TI.paral, is 
given only by tdwell. As a consequence, for volumetric 
multicell targeting, TI.scan can largely exceed the 
value of TI.paral, and 3D parallel illumination remains 
the only option for achieving multitarget activation 
with millisecond temporal resolution (Ronzitti et al., 
2017b).
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Figure 8. Temporal resolution and spiking rate. a, Light-elicited single spike by 2P holographic illumination (spot diameter, 15 µm; 
λ = 1030 nm). Short light illumination pulses (t = 2 ms) of Chronos (p = 0.09 mW/µm2), CoChR (p = 0.1 mW/µm2) (V. Zampini, 
unpublished observations), and ReaChR (p = 0.07 mW/µm2) expressing interneurons from layer 2/3 of the mouse visual cortex. 
b, Light-driven firing fidelity in opsin-positive interneurons achieved by illuminating with a train of 10 light pulses, Chronos (t = 2 
ms; f = 100 Hz; p = 0.12 mW/µm2), CoChR (t = 3 ms; f = 100 Hz; p = 0.1 mW/µm2), and ReaChR (t = 10 ms; f = 40 Hz; p = 0.04  
mW/µm2). Insets, The first four pulses enlarged. Chronos and CoChR data are adapted from Ronzitti et al. (2017a), and ReaChR 
data are adapted from Chaigneau et al. (2016). Calibration: a, 20 mV, 100 ms; b, Top and middle, 20 mV, 100 ms; bottom, 20 mV, 
100 ms. Reprinted with permission from Papagiakoumou et al (2018), Fig. 9. Copyright 2018, Springer Science+Business Media LLC.



33

NOTES

© 2018 Emiliani

As originally demonstrated for multitrap optical 
tweezers (Curtis et al., 2002), CGH can generate 
multiple 3D foci using algorithms for “prisms and 
lenses” (Leach et al., 2006). Similar algorithms, 
combined with visible or infrared light, have been 
successively used for 3D neuronal stimulation with 
1P or 2P uncaging (Nikolenko et al., 2008; Daria et 
al., 2009; Anselmi et al., 2011; Yang et al., 2011). 
However, optogenetic activation requires illumination 
of membrane areas greater than the micrometric 
size of spots typically adopted for uncaging. Thus, 
a possible solution (originally proposed by Packer 
et al., 2012) consists of generating in parallel 
multiple diffraction-limited spots via CGH at the 
positions of the targeted cells and simultaneously 
scanning the spots over the cell membranes using 
a galvanometric mirror–based system. Even so, the 
need for scanning the spots over the cell body limited 
achievable temporal resolution (illumination time 
for AP generation, ≥11 ms; latency, ≥20 ms; jitter, 
≥6 ms) (Packer et al., 2012, 2014). Lately, high-
peak-power–amplified excitation laser sources have 
been employed to reduce both latency (<10 ms) and 

jitter (~1 ms) using illumination durations of 10 ms 
and ~4.5 mW average illumination power per cell. 
Shorter illumination durations (e.g., 1 ms) also could 
be used to excite neurons; however, these require two 
to five times more power per cell (~10–20 mW) (Yang 
et al., 2018). Because efficient current integration 
under scanning photoactivation requires slow opsins, 
this approach limits the maximum achievable spiking 
rate. Moreover, the need for using focused light at 
saturation power to compensate for the small spot 
surface generates significant out-of-focus excitation 
(Rickgauer and Tank, 2009).

Alternatively, multitarget stimulation can be 
achieved using scanless 3D generation of extended 
patterns with a 3D extension of the Gerchberg–
Saxton (Gerchberg and Saxton, 1972) algorithm in 
combination with low-NA objectives (Piestun et al., 
1996; Haist et al., 1997). More recently 3D CGH, 
after being adapted to high-NA objectives and 
incorporated into intensity compensation protocols 
(Hernandez et al., 2016), was used to generate 
shaped patterns with uniform light distribution 
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Figure 9. TF and penetration depth. a, 2P fluorescence x–y cross-sections of GPC-generated excitation patterns mimicking a 
neuron with small processes (top left) and a 15-µm-diameter CGH spot (bottom left) after propagation through 550 µm of acute 
coronal cortical rat brain slices without (middle panel) and with (right panel) TF (λ = 950 nm). Nontemporally focused beams are 
transformed into speckled patterns after traveling through the tissue. b, The propagation of a large beam (a holographic spot) 
diffracted by the grating produces an ultrafast line scanning of the sample. Scattering events off the scanning line at a single 
moment in time cannot interfere with the ballistic photons in the line. Modified with permission from Papagiakoumou et al., 
(2018), Figs. 10a, 11. Copyright 2018, Springer Science+Business Media LLC.
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within an excitation field of 240 × 240 × 260 μm3. 
This approach made it possible to drive tail bending 
by selective photoactivation of a specific ensemble of 
premotor neurons in the larval zebrafish brain (dal 
Maschio et al., 2017). Similarly to 2D CGH, however, 
illumination of spatially closed targets quickly 
deteriorates axial resolution (Papagiakoumou et al., 
2018). On the other hand, using 3D illumination 

with TF is a challenge because the axially shifted 
holographic planes cannot be simultaneously imaged 
on the TF grating (Chen et al., 2018).

As a solution, we demonstrated an optical scheme 
using two SLMs (Fig. 10a) to independently 
control the lateral shape and position of multiple 
patterns (SLM1) and their axial position (SLM2) 
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Figure 10. Multiplane temporally focused pattern projection. a, Experimental scheme for multiplane temporally focused patterns. 
The system comprises a first beam-shaping part, which, according to experimental needs, can generate a Gaussian, a holographic, 
or a GPC beam. Here, a CGH beam is shown (red dashed box). The second part performs TF through the diffraction grating G 
and lenses L2 and L3, and spatial beam multiplexing through SLM2 and L3 via CGH (blue dashed box). L4 and OBJ (the objective) 
rescale the 3D pattern configuration at the sample volume. Modified with permission from Accanto et al. (2017), Fig. 1a. Copyright 
2017, The Authors. b–c, Examples of different ways of addressing the two SLMs in the scheme presented in a for MTF-CGH: 
b(i), SLM1 is vertically tiled in different areas, each addressed with independent phase profiles, which in the present paradigm 
project the words “neuro” and “photonics” in two different planes A and B. b(ii), SLM2 is addressed with two Fresnel lens phase 
profiles to axially displace each holographic pattern generated by SLM1 on separate planes, in this case at +20 µm (plane A) 
and –20 µm (plane B). b(iii), Phase profile resulting at the objective back focal plane (BFP) for a single spectral frequency. b(iv), 
Intensity distribution at the focal plane of the objective. Scale bar, 20 µm. Modified with permission from Hernandez et al. (2016),  
Fig. 3b. Copyright 2016, The Optical Society. c, Multiplexed temporally focused CGH. c(i), SLM1 is addressed with a phase hologram 
encoding the desired excitation pattern, e.g., a star. c(ii), SLM2 is addressed with a phase profile encoding a 3D diffraction-limited 
spot distribution. c(iii), Resulting phase profile at the objective BFP creating multiple replicas of the pattern generated by the first 
SLM. c(iv), Application of the method for projecting 50 15-µm-diameter circular, temporally focused spots in a volume of 300 × 300 
× 500 µm3. Adapted with permission from Accanto et al. (2017), Fig. 1b. Copyright 2017, The Authors. d, Illustration of different 
beam-shaping methods that could be used in MTF-LS configurations. The x–y, y–z cross-sections are shown for (i) MTF-CGH,  
(ii) MTF-GPC, and (iii) large Gaussian beams (3D-SHOT: 3D scanless holographic optogenetics with temporal focusing). In d(iii), both 
experimental data and simulation are shown. Green arrows indicate the primary focus of the method, and magenta arrows indicate 
the secondary focus. Excerpted with permission from Pégard et al. (2017), Figs. 2c, d. Copyright 2017, The Authors. For MTF-CGH 
and MTF-GPC, the axial intensity profiles along the yellow dashed lines of the y–z cross-sections are reported.
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(Hernandez et al., 2016). We did so by addressing 
the SLMs in vertical tiles equaling the number of 
planes to be illuminated (Fig. 10b). For the first time, 
this strategy enabled the generation of temporally 
focused patterns at axially distinct planes whose axial 
selectivity was demonstrated by 3D photoconversion 
of multiple targets in the zebrafish larva spinal 
cord and brain (Hernandez et al., 2016). The main 
drawback of vertically tiling the SLMs is the need for 
using holograms with a reduced pixel number, N, in 
the vertical direction (orthogonal to the dispersion 
direction) (Hernandez et al., 2016), so for N <100, 
the lateral resolution consequently deteriorates. 
This deterioration limits the maximum number of 
achievable planes to ≈ NSLM/100, with NSLM being 
the total number of pixels in the SLM vertical 
direction (6–12 planes for the most commonly used 
LC-on-silicon [LCOS] devices). This limitation 
can be overcome by using the second SLM for both 
lateral and axial beam multiplexing, as illustrated in  
Figure 10c (Accanto et al., 2017). This scheme 
enables multiplexed TF light shaping (MTF-LS), 
which has several advantages. First, because each spot 
is the exact replica of what the first SLM generates at 
the TF grating, the spot quality in the 3D volume 
is independent on the number of generated planes 
and axial position. Second, MTF-LS is compatible 
with different light-shaping approaches, including 
dynamic CGH (Accanto et al., 2017), GPC (Go et 
al., 2011; Accanto et al., 2017; Bañas and Glückstad, 
2017), CGH with a fixed phase mask (Accanto et al., 
2017), and low-NA Gaussian beams (Pégard et al., 
2017; Sun et al., 2018).

Dynamic CGH has maximal flexibility and enables 
fast lateral shaping. Replacing the bulky SLM 
with a smaller static phase mask makes the system 
less flexible but leads to a simpler, more compact 
optical design. GPC, on the other hand, permits the 
generation of illumination patterns with superior 
axial resolution and higher uniformity, that is, 
speckle-free (Fig. 10d). This feature is particularly 
advantageous for applications requiring spot sizes to 
be comparable with the speckle size or for multisite 
functional imaging. For conventional GPC, the 
conditions for achieving maximum interferometric 
contrast impose some restrictions on the optimal 
spot size and FOE (Papagiakoumou et al., 2010); 
moreover, intensity light shaping is limited to a single 
plane (conjugated to the SLM plane). However, 
when GPC is implemented in a MTF-GPC scheme, 
these limitations can all be overcome: the GPC setup 
can be designed to generate a shape with optimal 
diffraction efficiency, and multiplexed laterally and 
axially by the second SLM, thus enabling 3D spot 

generation within the same FOE reached in CGH 
(Go et al., 2011; Accanto et al., 2017; Bañas and 
Glückstad, 2017).

The MTF-LS approach can be further simplified 
by replacing the first light-shaping module with 
an expanded Gaussian beam, as independently 
demonstrated by two groups, led by M. Booth (Sun 
et al., 2018) and H. Adesnik (Pégard et al., 2017). 
However, as for MTF-GPC, the use of low-NA 
Gaussian beams limits the beam size on the SLM 
in the unchirped direction to a few millimeters. 
This limitation restricts the maximum power that 
can be used, the number of pixels illuminated, and 
therefore, the maximum number of achievable 
targets. Introducing a curvature on the incident 
Gaussian beam, as proposed by Pégard and colleagues 
(2017), enabled investigators to cover the entire 
SLM and generate hundreds of spots in a 400 × 400 
x 400 μm3 excitation volume. However, this solution 
inevitably separates the spatial from the temporal 
focal plane and leaves a secondary spatial focus, 
which deteriorates the axial resolution (Fig. 10d). 
Placing a rotating diffuser on an intermediate image 
plane can decrease the contribution of the secondary 
spatial focus (Mardinly et al., 2018), but the use of a 
low-NA Gaussian beam is limited to the generation 
of a nonreconfigurable, single-size spot. Additionally, 
the smooth edges of a Gaussian beam, unlike the 
sharp edges of GPC and CGH spots, can deteriorate 
the lateral resolution when using excitation power 
close to saturation.

Designing complex, multitarget experiments requires 
taking into account possible sources of photo damage 
to set the maximum number of achievable targets. 
Sources include thermal damage related to the linear 
absorption of light and nonlinear photochemical 
and ablation damage (Boulnois, 1986; Koester et al., 
1999; Hopt and Neher, 2001). Scanning approaches 
require higher intensity but lower average power, so 
they will be limited mostly by nonlinear damage. 
Parallel approaches, in contrast, use very low 
intensity but an average power that is two to three 
times higher than scanning methods (Picot et al., 
2018; Yang et al., 2018). Therefore, the latter will be 
limited mostly by thermal damage.

In a recent work, we developed a theoretical model 
of 3D light propagation and heat diffusion. This 
model is capable of simulating with micrometric 
resolution and millisecond precision the laser-
induced temperature rise produced by 2P optogenetic 
activation (Picot et al., 2018). Different illumination 
approaches (e.g., scanning, parallel) can be 
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reproduced, and heating can be investigated as a 
function of multiple parameters (e.g., laser power, 
number and distribution of spots, frequency of 
stimulation pulses) (Picot et al., 2018). This model’s 
predictions can provide useful information for 
designing multitarget 2P optogenetics experiments 
with minimal sample heating.

Outlook
CGH, combined with 2P excitation, enables in-
depth optical stimulation with millisecond temporal 
resolution and submillisecond temporal precision. 
Combining CGH with TF enables the generation 
of excitation volumes with micrometer axial 
resolution and robust propagation through scattering 
media. For neuronal activation, efficient current 
integration is achievable using parallel holographic 
illumination combined with laser amplifiers at a 
low-repetition rate (500 kHz). This enables reliable 
AP generation with millisecond temporal resolution 
and submillisecond-precision excitation densities  
(<100 µW/µm2). These findings, together with the 
high average power available in commercially available 
laser systems (>10 W at laser output), indicate that 
laser power is not the limiting factor for the maximum 
achievable number of targets using CGH. More likely, 
target number will be limited by other factors, such as 
sample heating (discussed above) or deterioration of 
the photostimulation spatial resolution. Indeed, for 
multiple-cell stimulation, photostimulating neurites 
crossing the illumination volume affects cellular 
resolution, thereby limiting the number of targets 
that can be stimulated with single-cell precision. 
Recent progress in engineering somatic opsins (Baker 
et al., 2016; Mardinly et al., 2018; Shemesh et al., 
2017) should enable us to transcend these limitations 
in the near future.
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NOTESIntroduction
Genetically encoded voltage indicators (GEVIs) 
are a promising technology for fluorescence readout 
of millisecond-scale neuronal dynamics. Previous 
GEVIs had insufficient signaling speed and dynamic 
range to resolve action potentials in live animals. 
We coupled fast voltage-sensing domains from 
a rhodopsin protein to bright fluorophores via 
resonance energy transfer. The resulting GEVIs are 
sufficiently bright and fast to report neuronal action 
potentials and membrane voltage dynamics in awake 
mice and flies, resolving fast spike trains with 0.2 ms  
timing precision at spike-detection error rates orders 
of magnitude better than previous GEVIs. In vivo 
imaging revealed sensory-evoked responses, including 
somatic spiking, dendritic dynamics, and intracellular 
voltage propagation. These results empower in vivo 
optical studies of neuronal electrophysiology and 
coding and motivate further advancements in high-
speed microscopy.

To dissect the mechanisms of high-speed 
neuronal information processing in the live brain, 
neuroscientists need to track cellular and subcellular 
electrophysiological activity with millisecond-scale 
resolution in identified neuron types. Genetically 
encoded fluorescent Ca2+ indicators report isolated, 
individual action potentials from many cell types in 
live animals (Chen et al., 2013; Inoue et al., 2015). 
However, Ca2+ indicators’ slow kinetics (~50–1000 ms)  
precludes high-fidelity studies of fast-spiking cell 
types, determinations of spike waveforms, resolution 
of individual spikes in fast spike trains, and precise 
estimates of spike timing. Moreover, the magnitude 
of Ca2+ influx in response to an action potential 
varies across cell types and even within individual 
cells (Chen et al., 2013; Inoue et al., 2015). In vivo 
Ca2+ imaging also poorly tracks subthreshold or 
dendritic voltage dynamics, due to insensitivity to 
hyperpolarizations and confounds from synaptic 
Ca2+ influx. Organic voltage-sensitive dyes typically 
have much faster kinetics than Ca2+ indicators 
but are generally highly phototoxic, allow neither 
genetically targeted delivery nor long-term imaging 
studies of single cells, and have been incapable of 
reporting single spikes in the live mammalian brain 
(Peterka et al., 2011).

GEVIs combine genetic targeting and optical 
readout of transmembrane voltage (Peterka et al., 
2011; Knopfel, 2012), and in principle can sense 
spikes and subthreshold dynamics. Nevertheless, to 
date, GEVIs have lacked the capabilities to detect 
individual action potentials and fast spike trains in 
live animals (Peterka et al., 2011; Knopfel, 2012). 

Past efforts fused fluorescent proteins to voltage-
sensitive domains (VSDs) from voltage-sensitive 
phosphatases (Lundby et al., 2008; Tsutsui et al., 
2008; Jin et al., 2012; St-Pierre et al., 2014; Hamel et 
al., 2015) or used Archaerhodopsin (Arch), which is 
both a fast VSD and a dim fluorophore (Hochbaum 
et al., 2014). Although Arch variants work well in 
cultured neurons, the intense illumination required 
(1–10 W · mm−2) plus the consequent heating, 
autofluorescence, and photo damage have precluded 
imaging studies in intact tissue over wide fields of 
view (Hochbaum et al., 2014).

Here we present fast GEVIs (<1 ms response) that 
fuse the Acetabularia acetabulum rhodopsin (Ace) 
(Tsunoda et al., 2006) and mNeonGreen (Shaner 
et al., 2013) fluorescent protein to enable voltage-
sensitive fluorescence resonance energy transfer 
(FRET) (Fig. 1A; Table S1). We previously introduced 
this “FRET-opsin” configuration (Gong et al., 2014; 
Zou et al., 2014), which combines the fast kinetics 
of a rhodopsin VSD with a bright fluorophore and 
provides high-fidelity membrane potential and spike 
train readouts at illumination levels ~50–100 times 
lower than used with Arch indicators. A FRET-
opsin indicator based on Leptosphaeria maculans 
(Mac) rhodopsin and yellow fluorescent mCitrine 
reported fast neural spiking in brain slices and 
Purkinje neurons’ dendritic activation in live mice 
(Gong et al., 2014). These results had suggested that 
optical recordings of action potentials and dendritic 
voltage dynamics in live animals might be attainable. 
Ace-mNeon indicators now enable high-fidelity 
imaging of individual spikes and fast spike trains 
in live mice and flies, due to their faster kinetics 
and superior brightness compared with all previous 
GEVIs. Ace is approximately sixfold faster than Mac, 
and mNeonGreen has a ~50% higher extinction 
coefficient than mCitrine and nearly threefold better 
photostability (Shaner et al., 2013). We created Ace 
mutants (Ace1Q and Ace2N) with an inactivated 
proton pump; these have blue-shifted absorption 
spectra compared with Mac and Arch (Tsunoda 
et al., 2006; Gong et al., 2014), yielding superior 
FRET acceptors when paired with green or yellow 
emitters (Figs. S1, S2). When used together with 
protein trafficking signals, the fusions provide high 
FRET efficiency and minimal protein aggregation in 
live neurons (Figs. 1A,B)—key attributes of a FRET 
indicator (Gong et al., 2014; Zou et al., 2014).

We measured responses of Ace1Q-mNeon and 
Ace2N-mNeon to voltage depolarization steps in 
cultured HEK293T cells. These sensors responded 
five- to sixfold faster than MacQ-mCitrine (Gong 
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Figure 1. Ace FRET-opsin sensors report membrane voltage with ~1 ms response times. A, Linker sequences bridging Ace1Q and 
Ace2N to mNeonGreen. Endoplasmic reticulum (ER) export sequence and Golgi export trafficking signal (TS) at the construct’s 
C-terminus improve the sensor’s membrane localization and hence the signaling dynamic range. B, Fluorescence signals from 
neurons expressing Ace1Q-mNeon or Ace2N-mNeon. Left, Baseline fluorescence emissions from mNeonGreen. Right, Spatial 
maps of the fluorescence response (ΔF/F) to a voltage step of ~100 mV. Areas of fluorescence and voltage response were 
generally colocalized. Illumination intensity: 15 mW · mm−2. Scale bar, 20 µm. C, Step responses of the Ace sensors, ASAP1 and 
MacQ-mCitrine, to +100 mV command voltage steps, normalized to each sensor’s maximum (or steady state) ΔF/F response to 
the command voltage. The initial rise of the Ace2N-mNeon sensor was more than sixfold faster than that of ASAP1 and MacQ-
mCitrine (Table S2). Inset, The full step response of all sensors. Note that the trace for Ace2N-mNeon exhibits hysteresis ~40–200 ms  
after the voltage step, outside the interval shown in the main plot. Illumination intensity: 15–50 mW · mm−2; image frame acqui-
sition rate: 5 kHz. Inset traces were downsampled to 250 Hz. D, Steady-state responses of FRET-opsin sensors as a function of 
membrane voltage in cultured neurons (N = 10 cells per trace). Since Ace2N-mNeon exhibited hysteric responses to voltage steps 
(Fig. S2), we also plot its peak initial responses. Illumination intensity: 15 mW · mm−2; error bars: SEM. Reprinted with permission 
from Gong et al. (2015), Fig. 1. Copyright 2015, American Association for the Advancement of Science.
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NOTESet al., 2014) and the ASAP1 indicator (St-Pierre et 
al., 2014) (Fig. 1C; Table S2). At termination of a 
step depolarization, Ace2N-mNeon exhibited some 
hysteresis during its relaxation back to baseline 
fluorescence levels (Fig. S3). However, the steady-
state response varied linearly with the transmembrane 
voltage within the physiological range of subthreshold 
potentials, and the initial peak response increased 
linearly between –100 mV and +30 mV (Fig. 1D). 
These relationships were similar to those of previous 
FRET-opsin sensors (Figs. 1D, S3), but the faster 
kinetics of the Ace indicators enabled superior spike-
detection fidelity, even for rapid successions of spikes 
that would have blurred together with Ca2+ imaging 
(Figs. 2A–E). During action potentials in cultured 
neurons, Ace2N-mNeon and Ace1Q-mNeon had 
peak changes in fluorescence intensity (ΔF/F) of 
12.0 ± 0.8% (mean ± SEM; N = 12 cells) and 8.5 ±  
0.7% (N = 10 cells), respectively, while leaving 
the spike waveform unperturbed (Figs. 2A,B, S4). 
Photobleaching rates were those of the constituent 
mNeonGreen, which is more photostable than EGFP 
(enhanced green fluorescent protein) (Shaner et al., 
2013) and comparable with those of other brightly 
fluorescent voltage indicators (Table S2).

To quantitatively compare multiple indicators, we 
used a metric of spike-detection fidelity, d', from 
signal detection theory (Wilt et al., 2013; Hamel et 
al., 2015). This metric accounts for an indicator’s 
optical waveform in response to a spike and thus 
captures rates of correct and false spike detection 
better than other metrics such as signal-to-noise 
ratio  (Materials and Methods are available at www.
sciencemag.org/content/350/6266/1361/suppl/DC1). 
Modest improvements in d' can have huge benefits 
for experimentation because false detection rates 
decline faster than exponentially with increases in 
d' (Wilt et al., 2013; Hamel et al., 2015). Compared 
with MacQ-mCitrine, the superior brightness and 
peak ΔF/F responses of the Ace indicators increased 
d' by factors of 2.2–3.0, with d' values of 100 ± 
12 (Ace2N-mNeon, mean ± SEM) and 70 ± 8 
(Ace1Q-mNeon) in cultured neurons (Fig. 2C). Our 
calculations predicted this should be sufficient to 
image spikes >0.4 ms in duration not only in brain 
slices but also in live animals (Fig. S5).

Studies in mouse brain slices and live mice validated 
these predictions (Figs. 2B,D,E, 3A–F). To facilitate 
spike detection, we sparsely expressed the GEVIs 
using the SAD-ΔG viral vector, which efficiently 
transduces neurons through axons (Osakada et al., 
2011). This labeling approach reduced background 
fluorescence from out-of-focal-plane or nonspecifically 

labeled sources. Previous studies with this virus have 
shown there is minimal toxicity in neurons up to  
10 d postinfection (Osakada et al., 2011). We imaged 
thick brain slices 3–5 d after viral injection and found 
Ace2N-mNeon reported action potentials with 
ΔF/F = 6.5 ± 1.5% and d' = 32 ± 5 (mean ± SEM; 
n = 5 cells) (Fig. 2B). Neurons expressing the GEVI 
had statistically indistinguishable spike waveforms 
compared with nonfluorescent neurons in the same 
slices (Fig. S4).

We next imaged Ace2N-expressing neurons in 
the mouse visual cortex, using an indicator variant 
(Ace2N-4AA-mNeon) with four extra amino acids 
in the linker domain (Table S1). This variant yielded 
improved expression and superior visualization of 
individual cells’ dynamics in live mice (Figs. 2D, 3A 
inset). Because extending the linker left the VSD 
unchanged, the voltage-dependent kinetics were 
unaffected, though the increased distance between 
the FRET pairs reduced the peak ΔF/F response to 
neural spikes (Fig. S6; Table S2). In anesthetized 
(Figs. 2D,E) and awake mice (Fig. 3), we readily 
observed spiking waveforms in labeled neurons in 
cortical layer 2/3, with interspike intervals as brief 
as ~10 ms—i.e., an interval 20-fold briefer than the 
signal integration time of the fast Ca2+ indicator 
GCaMP6f (Chen et al., 2013).

Ace2N-4AA-mNeon also provided a high level 
of spike-detection fidelity (d' = 16 ± 1.5, mean ± 
SEM; N = 56 layer 2/3 neurons, ~150 μm below 
the brain surface; N = 20 awake mice) at which 
the frequency of spike-detection errors is vastly less 
than with previous GEVIs. Imaging at a 1 kHz frame 
rate at a d' value of 16 corresponds to a mean rate 
of <10–7 detection errors per day (Wilt et al., 2013). 
Consistent with this, during simultaneous optical 
and loose-patch electrical recordings in the same 
neocortical neurons of anesthetized mice (Fig. 2D), 
the spike trains attained using Ace-4AA-mNeon 
and those from the electrical recordings were in 
perfect concordance (837 total spikes detected in 
dual recordings; N = 3 mice). Highlighting the 
importance of Ace2N’s approximately threefold 
increase in d' over the best previous GEVIs, in vivo 
imaging with a value threefold lower (d' = 5.3) leads 
to an unacceptable four spike-detection errors per 
second. The nearly vanishing error rate predicted 
at d' = 16 is unattainable over hours under true 
experimental conditions owing to the indicator’s 
finite photostability and nonstationary noise sources 
in the live brain other than photon shot noise. 
Nevertheless, this calculation underscores the huge 
impact of modest rises in d', in that Ace2N has an 
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Figure 2. Ace sensors provide ~3- to 10-fold better spike-detection fidelity (d') than previous GEVIs. A, Fluorescence signals 
from cultured neurons expressing Ace2N-mNeon (blue trace) had sharp peaks closely matching action potentials in concurrent 
electrophysiological recordings (black trace). Red arrows mark a ~5 mV depolarization apparent in both traces. B, Optical and 
electrical waveforms of single action potentials in example neurons expressing Ace2N-mNeon in cell culture (top), Ace2N-mNeon 
in mouse brain slice (middle), and Ace2N-4AA-mNeon in anesthetized mouse brain (bottom). Data (gray points) acquired optically 
from different spikes were temporally aligned to the corresponding peaks in the electrical traces. Mean waveforms of the optical 
data (blue traces; averaged over N = 30 spikes; resampled to 2 kHz) are aligned with the mean electrical waveforms (black traces; 
whole-cell patch recordings for cells in culture and brain slice; loose patch recording for live mouse). C, Peak ΔF/F responses to 
action potentials, as a function of the total number of photons detected per spike in cultured neurons. Isocontours (dashed 
lines) of spike-detection fidelity, d', were determined from measured brightness and optical waveforms, as in B. Error bars: SEM. 
D, Concurrent optical (colored) and juxtacellular electrical (black) recordings in an anesthetized mouse from V1 cells expressing 
Ace2N-4AA-mNeon. Magenta trace (lower right) shows the two magenta spikes in adjacent trace. Across 837 spikes, the 
electrical and optical traces were in perfect accord. Inset, Two different neocortical neurons imaged by two-photon microscopy. 
A maximum projection of a dual-color image stack (top) acquired in a live mouse shows an Ace2N-4AA-mNeon–labeled cell and 
a pipette, filled with red dye, that recorded somatic electrical activity. An image acquired in a brain slice (bottom) after in vivo 
experimentation shows the membrane localization of Ace2N-4AA-mNeon. Scale bars, 40 µm. E, Histogram of timing errors for 
spikes detected optically, as in D, using the electrical trace to provide the actual spike time (N = 837 spikes from 3 cells). Red line: 
Gaussian fit. Error bars: SD, estimated as counting errors. Illumination: 15, 25, and 25 mW · mm−2, respectively, for studies in 
culture, brain slice, and live mice. Image acquisition rates: 440 Hz, 440 Hz, and 1000 Hz, respectively. Reprinted with permission 
from Gong et al. (2015), Fig. 2. Copyright 2015, American Association for the Advancement of Science.
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NOTESerror rate that is orders of magnitude lower than 
previous GEVIs and is the first GEVI with acceptable 
error rates in the detection of single action potentials 
in live mammals.

Ace2N-4AA-mNeon also provided exquisite spike-
timing accuracy, as determined from the dual optical 
and electrical recordings in live mice (Fig. 2E). 
Relative to the spike times in the electrical traces, 
the spike times in the optical traces differed by only 
0.24 ± 0.01 ms (SEM; N = 837 spikes) (see Materials 
and Methods available online). This degree of spike-
timing accuracy approached the theoretical physical 
limits: 0.14 ± 0.03 ms set by quantum mechanical 
photon shot noise (Wilt et al., 2013; Hamel et al., 
2015; Materials and Methods available online).

We also examined in awake mice whether individual 
cells’ ongoing fluctuations in baseline Ace2N-4AA-
mNeon emissions reflect subthreshold membrane 
voltage dynamics. If so, periods of optically reported 
membrane hyperpolarization should have reduced 
spike rates, and periods of reported depolarization 
should have elevated firing rates. This prediction 
proved correct for all 56 layer 2/3 neurons imaged 
in awake mice (Fig. 3B). As determined optically, 
each neuron fired spikes from baseline voltage levels 
that were significantly higher than its median resting 
potential (p < 0.05 for all 56 cells; Wilcoxon rank-
sum test). As a population, the 56 cells were far 
more likely to fire spikes when the optically reported 
membrane voltages were above median resting levels 
p < 10–15; binomial test). Ace2N-4AA-mNeon also 
revealed submillisecond-scale features of dendritic 
voltage dynamics during spike generation (Fig. 3C;  
Movie S1). Thus, Ace2N reports aspects of individual 
cells’ subthreshold, dendritic, and high-speed 
membrane potential dynamics in the live brain.

We next studied visually evoked spiking responses. 
To illustrate targeting of specific subclasses of 
visual cortical neurons, we expressed Ace2N-4AA-
mNeon selectively in cells of the primary visual 
cortex (V1) that sent axons to the lateromedial 
area (LM) (denoted V1  LM neurons), one of 15 
cortical areas in mice that receive inputs from V1 
(Wang and Burkhalter, 2007; Materials and Methods 
available online). We presented drifting grating 
visual stimuli to awake mice and imaged the cells’ 
evoked responses. Generally, layer 2/3 V1  LM 
neurons’ evoked spiking was preferentially elicited 
by gratings of one orientation (4.1 ± 1.1 spikes · s–1; 
mean ± SEM) versus the response (or suppression of 
activity) to gratings of the orthogonal orientation 
(1.0 ± 0.2 spikes · s–1) (Figs. 3D–F; N = 7 neurons 

from 5 mice; p < 10–3; permutation test for each cell; 
105 permutations). The mean orientation selectivity 
index (0.82 ± 0.03; mean ± SEM), as determined 
from Ace2N-4AA-mNeon fluorescence traces, fit 
well with values determined by Ca2+ imaging in the 
same neurons (Fig. 3E) and with previous studies 
(Niell and Stryker, 2008; Materials and Methods 
available online). There were also light-sensitive 
V1  LM neurons that responded at the onset or 
offset of visual illumination regardless of the grating 
orientation (Fig. S8).

We also studied sensory-driven neural dynamics in 
live fruit flies, in which electrical recordings are often 
challenging. Beyond in vivo imaging of fast somatic 
spike trains, GEVIs have the potential to reveal fast 
voltage dynamics in genetically identified dendrites 
and axons. To illustrate, we imaged fast dynamics in 
the olfactory system and first examined local neurons 
(LNs) of the olfactory glomeruli (Chou et al., 2010), 
in which we used the R55D11-GAL4 fly driver line 
(Jenett et al., 2012) to express an Ace2N variant with 
two extra amino acids in the linker domain (Ace2N-
2AA-mNeon) (Figs. 4A, S6; Table S2). The baseline 
spike rate in the absence of odor stimulation was 7.4 
± 2.8 s–1 (N = 8 neurons from 8 flies), comparable 
with electrophysiological measurements (Chou et 
al., 2010). In response to odor stimuli, we observed 
fast evoked spike trains in single trials at firing rates 
significantly above baseline (p < 10–3; Wilcoxon 
signed rank test) (Fig. 4B). The peak odor-evoked 
spike rate was 65 ± 7 s–1, i.e., the individual spikes 
fired about an order of magnitude faster than what 
Ca2+ imaging can resolve.

As in mice, we performed dual optical and electrical 
recordings to verify the spike trains, this time using 
whole-cell patch-clamp electrodes to access LN 
neurons’ intracellular potentials in intact fly brain 
explants (Fig. 4C, left). Across 18,141 recorded 
spikes, the spike trains provided by Ace2N-2AA-
mNeon perfectly matched those from the patch-
clamp recordings (N = 4 fly brains) and had spike-
timing errors of 0.19 ± 0.002 ms (SEM; N = 18,141 
spikes), close to the theoretical optimum of 0.11 
± 0.03 ms (Fig. 4C, right). Subthreshold dynamics 
were readily apparent in the optical traces, including 
plateau potentials and the rising and falling voltage 
waveforms surrounding action potentials. Ace2N-
2AA-mNeon also reported the submillisecond-
scale dynamics of spike back-propagation into the 
dendritic tree, revealing ~0.5–1.0 ms delays between 
the initiating voltage peak at the soma and those in 
the dendrites (Fig. 4D; Movie S2).

© 2018 Schnitzer

High-Speed Recording of Neural Spikes in Awake Mice and Flies with a Fluorescent Voltage Sensor



47

NOTESWe next imaged olfactory projection neurons (PNs), 
which generally have more selective odor tuning than 
LNs (Wilson et al., 2004; Olsen et al., 2007). We 
used live flies and focused on R26B04-GAL4–labeled 
PN dendritic arbors (Fig. 4A), which exclusively 
innervate the DL3 glomerulus (Wilson et al., 2004). 
In response to specific odors, the arbors exhibited 
fast, odor-evoked voltage dynamics with temporal 

structure at the 10–100 ms time scale (Figs. 4E,F). 
We compared these dynamics with those seen by 
Ca2+ imaging using the GCaMP6f indicator (Fig. S9).  
The odor-tuning profiles determined from the two 
modalities were in broad agreement, but voltage 
imaging with Ace2N revealed both small-amplitude 
responses and fast temporal signals that GCaMP6f 
failed to convey (Fig. S9). Finally, we imaged the PN 
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Figure 3. Imaging single action potentials and subthreshold membrane voltage fluctuations in layer 2/3 visual cortical neurons of 
awake mice. A, Optical voltage trace acquired in an awake mouse, showing spiking by a V1 layer 2/3 neuron expressing Ace2N-
4AA-mNeon via the SAD-Ace2N-4AA-mNeon-RGECO1 virus. Dashed boxes, Intervals shown at successively expanded time scales. 
Insets, Image acquired in vivo of the cell that provided the optical trace, and a pair of fluorescence images taken in a fixed tissue 
slice of an identically labeled V1 neuron from the same preparation expressing Ace2N-4AA-mNeon (green) and RGECO1 (red). 
Scale bar, 40 µm. B, Periods of reduced spiking arose when Ace2N-4AA-mNeon reported a hyperpolarization. To track each cell’s 
membrane voltage apart from its spikes, we applied a median filter (50 ms window) to the trace. For nonparametric comparisons, 
we matched each spike to the voltage at which the spike occurred, quantified as a percentile of the cell’s full range of membrane 
voltages over the full recording. For each cell, the plot shows the spike rate (normalized to each cell’s peak rate) at voltages across 
all percentiles. C, Top, Spike-triggered average image frames for the cell in A, showing the mean dendritic activation before and 
after firing an action potential. Times are relative to the spike peak at the soma. The left two dendrites activate before the right 
two dendrites. We calculated mean time traces for the soma and the left and right dendrite pairs using the spatial masks shown. 
Bottom, Mean fluorescence time courses (ΔF/F) for each of the three masks, normalized to the same maximum. The traces confirm 
the left-to-right activation pattern; the right dendrites exhibit a voltage peak 0.25–0.5 ms after the left dendrites. The ΔF/F image 
series and time traces were sampled in 0.25 ms time bins, using data from 1900 spikes mutually aligned to their peaks. Shaded 
regions on the time traces denote SEM and are barely discernible. D, Example optical traces from a cortical V1  LM neuron 
in an awake mouse, showing visually evoked responses to drifting gratings (orientations and motion directions marked above 
each trace). Spiking responses to the cell’s preferred grating orientation (second column) differed from the activity suppression in 
response to the orthogonal orientation (fourth column). E, Mean spike rates of the cell in D, determined from the optical voltage 
trace in response to gratings moving in different orientations (10 trials per stimulus). Solid black and dashed gray circles indicate 
spike rates of 4 s–1 and 2 s–1, respectively. Ca2+ imaging using RGECO1 in the same cell yielded similar orientation tuning. Evoked 
Ca2 signals were integrated over 1 s and normalized so that Ca2 and spiking responses to the preferred orientation (225º) were 
plotted at the same radius on the polar plot. Shaded areas indicate SEM. F, Mean ± SEM spike rates in response to gratings at 
the preferred orientation were higher than to those oriented orthogonally (p < 0.01 for each of 7 cells; permutation test; 105 
permutations). Frame acquisition rates: voltage imaging, 1 kHz; Ca2 imaging, 20 Hz. Illumination intensity: 20 and 10 mW · mm−2, 
respectively, for voltage and Ca2 imaging. Labeled neurons were ~150 µm below the brain surface. Reprinted with permission 
from Gong et al. (2015), Fig. 3. Copyright 2015, American Association for the Advancement of Science.
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Figure 4. Odor-evoked spiking, dendritic dynamics, and voltage propagation delays in fly olfactory neurons. A, Top, Fluorescence 
images of an LN (left) and a PN (right) expressing Ace2N-2AA-mNeon in the fly antenna lobe. Bottom, Spatial maps of the fluores-
cence response (ΔF/F) at the peak of an odor-evoked transient. Scale bar, 40 µm. B, Top, Optical voltage traces (blue traces) from 
the LN in A reveal increased spiking during 5% benzaldehyde odor presentation (purple bar). Bottom, Odor-evoked spike rate as a 
function of time, averaged over five trials (shaded area denotes SEM). Inset, Mean peak spike rate during odor presentation was higher 
than baseline rates without odor (p < 10–3; Wilcoxon signed rank test; N = 8 neurons and 8 flies [20 × UAS-Ace2N-2AA-mNeon/+; 
R55D11-GAL4/+]). C, Left, Concurrent optical voltage and whole-cell patch electrical recordings in whole-brain explants from the same 
cell type as in B. Spikes were evoked by current injection. Middle, Paired optical and electrical traces, taken from periods enclosed by 
dashed boxes in the left panel. Spikes are clearly distinguished in the optical traces from both the plateau of subthreshold depolar-
ization and each rise to spike threshold. Right, Histogram of timing errors for the spikes detected optically, relative to the spike times 
in the whole-cell patch recordings (N = 18,141 spikes from 4 flies). Red line: Gaussian fit. SD of the timing errors: 0.19 ± 0.002 ms.  
Error bars estimating the SD as counting errors are too small to be seen. D, Left, Spike-triggered average image frames for the cell in 
C, showing the mean activation in the neural processes before and after firing a somatic spike, as determined from spike times in the 
electrical recording. Depolarization started at ~ –1.0 ms in the soma (upper right of each image) and propagated right to left across 
the dendritic tree during a spike. We calculated mean time traces for the soma and two subportions of the dendrites using the spatial 
masks in the lower right panel (cyan line encloses the soma; red and gold lines enclose dendritic regions). Scale bar, 40 µm. Right, 
Mean fluorescence traces (ΔF/F) for each of the three spatial masks, normalized to the same maximum. The traces confirm the right-
to-left activation pattern; the left dendrites exhibited a voltage peak 0.5–0.7 ms after the right dendrites. Mean ΔF/F image series and 
traces were sampled in 0.25 ms bins, using data from 1300 spikes, temporally aligned to the spike peaks. Shaded regions denote SEM 
and are discernible only for the soma. E, Odor-evoked, optical voltage traces from the DL3 projection neuron dendrites of A, with 
significant rises in activity over baseline for some (10% ethyl acetate [EA] and 3-octanol [1O3O]; p < 0.04 for both EA and 1O3O) but 
not other odors (10% benzaldehyde [Ben] and isopropanol (IPA); p = 1.0 and 0.4 for Ben and IPA, respectively; Wilcoxon signed-rank 
tests; N = 6 flies; [20 × UAS-Ace2N-2AA-mNeon/+; R26B04-GAL4/+]). F, Odor-evoked dendritic activation levels, relative to baseline 
levels. G, Top, Example fly expressing Ace2N-2AA-mNeon in DL3 cells in which we concurrently imaged dendrites and axons. Bottom, 
Optical traces from both regions show concurrent activity. Inset, Averaged traces aligned to onset of dendritic activity reveal a ~4 ms 
propagation delay between dendrites and axons (N = 30 transients; shaded regions denote SEM). Scale bar, 50 µm. Illumination:  
20 mW · mm–2; frame acquisition rate: 1 kHz. For display only, each optical trace in B was high-pass filtered by subtracting a median-
filtered (50 ms window) version of the trace. Traces in E were processed the same way for display, but with a 1 s filter window. 
Reprinted with permission from Gong et al. (2015), Fig. 4. Copyright 2015, American Association for the Advancement of Science.
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NOTESdendritic arbors and axonal boutons simultaneously. 
Odor-evoked voltage signals in the two structures 
were similar, but there was a 3.7 ± 0.4 ms (mean ± 
SEM; N = 3 flies) propagation delay from dendrites to 
axons (Fig. 4G). Neither Ca2+ imaging nor electrical 
recordings have been capable of revealing this type of 
fast, intracellular signal propagation in a live animal.

By virtue of their bright emissions, fast (<1 ms) 
kinetics, and targeted expression, Ace2N GEVIs 
open a wide range of experimental avenues in optical 
neurophysiology. Their capabilities to track fast 
spiking, subthreshold dynamics, and sensory-evoked 
and back-propagating dendritic voltage activity in vivo 
enable direct visualization of many temporal features 
of neural dynamics, plasticity induction, and coding 
that have long been inaccessible. When combined 
with chronic animal preparations (Hamel et al., 
2015), it will be possible to track these phenomena 
over multiple days. Ace2N sensors resolved sensory-
evoked spike trains with firing rates as high as ~75 
s–1 (the fastest we encountered) with ~0.2 ms timing 
accuracy. Whereas in vivo Ca2+ imaging usually 
resolves successive spikes if they are ~50–250 ms 
apart and has ~20–100 ms timing accuracy for 
isolated spikes (Chen et al., 2013; Inoue et al., 2015), 
Ace2N sensors directly reveal the constituent spikes 
in bursts—a widespread and important means of 
neural signaling (Lisman, 1997; Mathy et al., 2009). 
The Ace2N sensors’ timing precision is also key to 
resolving long-standing debates over the temporal 
attributes of neural coding (Diba et al., 2014; Zuo et 
al., 2015).

The retrograde labeling strategy we used to express the 
Ace2N indicator in live mice also holds importance 
for future work, in that every soma we imaged had 
an axon at the virus injection site. This allowed us 
to target the subclass of V1 neurons with projections 
to area LM. A logical next step in the study of V1 
would be systematic voltage imaging of visually 
evoked spiking across all 15 subclasses of V1 neurons, 
as categorized by their axonal projections (Wang and 
Burkhalter, 2007). There are long-standing in vivo 
electrophysiological methods for identifying cells with 
specific axonal projections (Hahnloser et al., 2002), 
but they are technically onerous to an extent that 
has precluded widespread and routine use. Voltage 
imaging is now poised to make commonplace the 
study of neural dynamics in live mammals in chosen 
anatomical projection pathways.

Until now, subthreshold neural voltage dynamics have 
usually been inaccessible in live animals, especially in 
fine neural processes in which intracellular recordings 

are nearly prohibitive. As shown here, Ace-mNeon 
reveals fast dendritic activity, including stimulus-
evoked dynamics and spike back-propagation. 
This is especially important for studies of flies and 
other species in which fine neurites are vital to 
information processing (Borst et al., 2010). There is 
also rising appreciation of the importance of dendritic 
computation in mammalian neurons (Smith et al., 
2013; Sheffield and Dombeck, 2015). Ace-2N should 
allow direct observations of such phenomena in vivo.

For our in vivo imaging studies, we used wide-field 
epifluorescence microscopy, 1 kHz imaging rates, and 
sparse fluorescence labeling. Fluorescent V1  LM 
neural somata were usually ~150 μm below the brain 
surface and separated by ~40–60 μm (Fig. S7). This 
separation enabled high-fidelity tracking of neural 
spiking despite the lack of optical sectioning and the 
consequent background fluorescence. Comparable 
performance should also be feasible in deep brain 
areas by using microendoscopes to access deep tissues 
(Hamel et al., 2015). Studies of both surface and 
deep neural ensembles would benefit from improved 
scientific-grade cameras for fast imaging (1 kHz) at 
cellular resolution over broader fields of view than are 
possible today. For comparison, Ca2+ imaging studies 
(10–20 Hz) capture 100-fold larger specimen areas 
than those sampled here at 1 kHz (Hamel et al., 2015).

In principle, microscopy modalities with optical 
sectioning should also allow denser fluorescence 
labeling patterns and deeper optical penetration 
through thick tissue. A challenge, however, is that 
nearly all extant in vivo microscopy modalities with 
sectioning involve laser scanning, with pixel dwell 
times typically ~0.1–2 µs for frame rates of ~10–20 Hz.  
Given the importance of detecting as many 
signal photons as possible with voltage imaging, 
conventional laser scanning is plainly insufficient at 
the faster frame rates used for in vivo voltage imaging 
(~0.5–1 kHz). The introduction of Ace2N indicators 
for in vivo voltage imaging puts a premium on the 
innovation of microscopes that provide optical 
sectioning without conventional laser scanning. The 
emergence of scanless forms of optical sectioning 
microscopy holds particular interest for the further 
development of in vivo voltage imaging capabilities 
(Watson et al., 2010; Prevedel et al., 2014). Even 
with existing optical hardware, Ace-mNeon’s 
capacities for targeted imaging of cells of identified 
types or axonal projections, resolution of fast spike 
trains, accurate estimation of spike timing, and 
observation of subthreshold and dendritic voltage 
dynamics open many questions to empirical study 
that hitherto could not be examined in live animals.
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NOTESIntroduction
Understanding neural computation requires the ability 
to measure how a neuron integrates its multitude of 
synaptic inputs, as well as how neural ensembles work 
together during sensory stimulation and motor control. 
Optical microscopy enables the discovery of physical 
structures and phenomena otherwise invisible or 
unresolvable to the naked eye. Starting with Ramón 
y Cajal’s identification using optical microscopes of 
neurons as the elementary computational unit of 
the brain (Cajal, 2002), neuroscience has greatly 
benefited from the development of optical microscopy 
technology. This chapter reviews select recent works 
on high-resolution and high-speed in vivo imaging of 
the brain.

High-Resolution In Vivo Imaging 
Using Adaptive Optics
Owing to the wave nature of light, the resolution 
of conventional optical microscopes is limited by 
diffraction to approximately half the wavelength 
of light. In practice, however, optimal performance 
of microscopes is achievable only under limited 
conditions, requiring specific coverglass thickness 
and immersion medium. Additionally, the optical 
properties of the specimen and the immersion 
medium need to be matched. The latter is seldom 
achieved for most biological samples, including the 
brain, whose very own mixture of ingredients (e.g., 
water, proteins, nuclear acids, and lipids) gives rise 
to spatial variations in its refractive index. Such 
inhomogeneities induce wavefront aberrations, 
leading to a degradation in the resolution and contrast 
of microscope images that further deteriorates with 
imaging depth (Schwertner et al., 2004a,b).

By measuring the accumulated distortion of light as 
it travels through inhomogeneous specimens, and 
correcting for it using wavefront shaping devices 
such as deformable mirrors and liquid-crystal spatial 
light modulators (SLMs), adaptive optics (AO) can 
recover diffraction-limited performance deep within 
living systems. The optical aberrations involved 
in image formation (Fig. 1) can be detected by 
measuring the point-spread function (PSF) of the 
microscope, typically by imaging a point object of 
subdiffraction dimensions (e.g., fluorescent bead) in 
three dimensions (3D). Deviation from the ideal PSF 
indicates the presence of aberrations, an effect that 
is often easier to detect on the axial plane (Fig. 1b).

The implementation of AO in microscopy depends 
on how image formation is attained in the specific 
microscopy modality. For example, in laser scanning 
microscopy (e.g., confocal and multiphoton 
microscopy), specimen-induced aberrations distort 
the wavefront of the excitation light and prevent the 
formation of a diffraction-limited focal spot (Fig. 1). For 
multiphoton microscopes, where the signal is detected 
by a nonimaging detector (e.g., a photomultiplier tube 
[PMT]), aberration correction is needed only for the 
excitation light. In a confocal microscope, aberration 
correction is implemented in both the excitation 
light (providing a diffraction-limited excitation 
confinement) and the fluorescence emission (ensuring 
the in-focus fluorescence passes through the confocal 
pinhole), and can be accomplished using the same 
wavefront correction device located in a common 
path. In a wide-field microscope, aberration correction 
is usually applied only to the emitted fluorescence, 
which has to travel through the aberrating sample 
before image formation takes place on a camera.
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Figure 1. The effect of aberrations on image quality. a, An aberration-free wavefront leads to a diffraction-limited focal spot in 
a point-scanning (e.g., two-photon fluorescence) microscope. b, Specimen refractive-index mismatches distort the wavefront 
of the excitation light, leading to a dim, enlarged focus. c, Optimal imaging performance can be recovered by preshaping 
the wavefront of the excitation light to cancel out the specimen-induced aberration. The sinusoidal curves denote the phase 
relationship among the rays. Axial images obtained from two-photon excitation of 1 µm fluorescent red beads are shown for 
three different cases: a, ideal, aberration-free imaging conditions; b, an artificial aberration is introduced, causing a 8.6-fold 
decrease in brightness and a degradation of axial resolution; and c, AO is used to recover ideal imaging performance. Scale bar: 
a, 1 µm. Modified with permission from Rodríguez and Ji (2018), Fig. 1. Copyright 2018, Elsevier.
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Microscopy
The different implementations of AO in microscopy 
(Kubby, 2013; Booth, 2014; Booth et al., 2015; Ji, 
2017) differ mainly in how the aberration is measured 
and are commonly classified into direct and indirect 
wavefront sensing methods.

Direct wavefront sensing methods
Direct wavefront sensing methods make use of 
a dedicated wavefront sensor, such as a Shack–
Hartmann (SH) wavefront sensor, to directly 
measure wavefront aberrations (Fig. 2) from a light-
emitting point-like source generated via fluorescence 
excitation or backscattering of the excitation light 
(Rodriguez and Ji, 2018). Light from such a “guide 
star” accumulates aberrations as it propagates through 
the sample and the instrument before reaching the 
SH sensor, consisting of a two-dimensional (2D) 
array of lenses and a camera (Fig. 2a). The local slope 
of each wavefront segment can be determined from 
the displacement of the focus of the corresponding 
light ray from its aberration-free position on a camera 
placed at the focal plane of the lenslet array (Fig. 2b). 
By assuming a continuous wavefront, the phase offset 
of each segment can be calculated (Southwell, 1980) 
and the wavefront reconstructed. This information 
is then used to control the wavefront shaping device 
in order to compensate for instrument-induced and 
sample-induced aberrations before image formation. 
Because wavefront aberration is obtained in a single 
measurement, direct sensing and correction can 
operate at high speed (e.g., milliseconds). Accurate 
wavefront aberration measurements from such a 
direct wavefront sensing scheme are possible only 
when enough ballistic (unscattered) light reaches the 
wavefront sensor. As such, this method works well in 
brains that are either transparent or weakly scattering.

Indirect wavefront sensing schemes
Indirect wavefront sensing schemes, needing only 
a wavefront shaping device, are typically easier to 
implement in existing microscopes and can be readily 
used for scattering samples (Fig. 3).

Pupil segmentation
One of several indirect methods, based on pupil 
segmentation, relies on similar physical principles 
as SH wavefront sensors. By measuring lateral 
image shifts when different pupil subregions are 
sequentially illuminated, the local slope of each 
wavefront segment can be calculated (Ji et al., 2010). 
The phase of each segment can then be obtained 
by direct interference measurements (Liu et al., 

2014) or through reconstruction algorithms. By 
illuminating one pupil segment at a time, each image 
is taken under a lower numerical aperture (NA) with 
an enlarged focus. As a result, the images can contain 
contributions from structures originally beyond the 
excitation volume under full-pupil illumination, 
making image-shift measurements difficult in 
densely labeled samples. Alternatively, the entire 
pupil can be illuminated at all times (Milkie et al., 
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Figure 2. AO microscopy using direct wavefront sensing.  
a, 2PFM using an SH sensor. b, A wavefront is incident on a SH 
wavefront sensor, where an array of lenslets focuses the light 
into a 2D array of foci onto a camera. The local slopes of wave-
front segments can be measured from the displacements of the 
foci relative to their aberration-free positions. c, Two-photon  
in vivo imaging of zebrafish larval brain obtained without (left) 
and with (right) AO correction (Wang et al., 2014a). d, Two-
photon in vivo imaging of dendritic spines in the mouse brain 
obtained without (left) and with (center) AO correction, and 
an SH sensor image with its corresponding corrective wave-
front (right) (Wang et al., 2015). Scale bars: c, 10 µm; d, 5 µm. 
Modified with permission from Rodríguez and Ji (2018), Fig. 2. 
Copyright 2018, Elsevier.
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2011), thus maintaining the full excitation NA 
and rendering this approach applicable to samples 
of arbitrary labeling density. Scanning one ray 
around the aberrated reference focus formed by the 
remaining rays, while monitoring the variation of the 
signal strength, reveals the additional tilt needed for 
maximal interference, ultimately yielding the local 
slope of this wavefront segment. To speed up the 
aberration measurement and improve the signal-to-
noise ratio, gradients of multiple wavefront segments 
can be determined in parallel through frequency 
multiplexing (Wang et al., 2014b).

Modal wavefront sensing
Another indirect approach, known as modal 
wavefront sensing, involves acquiring a series of 
images while intentionally distorting the wavefront 
by a known combination of orthogonal aberration 
modes (e.g., Zernike polynomials) using a wavefront 
shaping device. The wavefront is adjusted iteratively 
until a certain image metric is optimized, such as 
brightness or sharpness (Booth, 2006; Débarre et al., 
2007; Zeng et al., 2012; Galwaduge et al., 2015).

Focus scanning holographic aberration probing: 
F-SHARP
A different wavefront correction approach, termed 
“focus scanning holographic aberration probing” 
(F-SHARP), directly measures the amplitude and 
phase of the scattered electric field PSF via the 
interference of two excitation beams, allowing 
for fast wavefront correction of both aberrations 
and scattering at high resolution (Papadopoulos 
et al., 2017). Placing a wavefront shaping element 
at a Fourier plane to the image plane, the required 
correction pattern is the 2D Fourier transform of the 
measured PSF of the scattered electric field.

High-Resolution Morphological 
Imaging of Neurons In Vivo
In the following sections, we review a number of 
recent experimental findings that illustrate how 
neurobiology has benefited from using AO microscopy 
to correct for brain-induced aberrations and achieve 
high-resolution imaging in vivo, allowing individual 
synaptic terminals to be resolved at greater depth.

Fast direct wavefront sensing schemes
Using a fast direct wavefront sensing scheme 
with two-photon excited visible fluorescent guide 
stars, diffraction-limited two-photon imaging was 
demonstrated in large volumes (>240 μm per side) 
in zebrafish larval brains in vivo (Fig. 2c) (Wang 
et al., 2014a). This correction scheme was also 
applied to multicolor diffraction-limited confocal 
imaging in the zebrafish brain down to 200 μm 
resolution, allowing for the study of subcellular 
organelles (Wang et al., 2014a). By making use of 
the reduced tissue scattering of near infrared guide 
stars, the applicability of direct wavefront sensing 
was extended to tissues that strongly scatter visible 
light (Wang et al., 2015). Such an approach allowed 
in vivo two-photon microscopy imaging of the mouse 
brain at greater depth (Fig. 2d), with the ability to 
resolve synaptic structures down to 760 μm.
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Figure 3. AO microscopy using indirect wavefront sensing.  
a, An AO two-photon fluorescence microscope. b, Two-photon 
maximal-intensity projection images of dendrites at 376–395 µm  
below dura measured without (left) and with (right) AO in 
the mouse brain in vivo, using the frequency-multiplexed 
pupil-segmentation method (Wang et al., 2014b). c, In vivo 
three-photon transcutical imaging in the lateral horn of the 
fly brain (Tao et al., 2017). d, Two-photon in vivo imaging of 
zebrafish larval brain obtained without (left) and with (right) 
AO correction, 300 µm under the brain surface, using F-SHARP 
(Papadopoulos et al., 2017). Scale bars: b, 10 µm; c, 20 µm;  
d, 10 µm. Modified with permission from Rodríguez and Ji 
(2018), Fig. 3. Copyright 2018, Elsevier.
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To use the visible fluorescent signal for wavefront sensing 
in scattering brain tissue at depth, indirect wavefront 
sensing methods need to be used. In one of the early 
demonstrations of AO microscopy for in vivo brain 
imaging, a pupil-segmentation approach with single-
segment illumination allowed for diffraction-limited 
two-photon imaging 450 μm below the surface of the 
mouse brain in vivo (Ji et al., 2012). The same method 
has also been used to correct for system aberrations in 
two-photon fluorescence microendoscopy (Wang and 
Ji, 2012; Wang et al., 2012, 2013). For more densely 
labeled samples, the frequency-multiplexed pupil-
segmentation method proved successful at measuring 
and correcting for aberrations during in vivo two-photon 
imaging of Caenorhabditis elegans, zebrafish larva, and 
mouse brains (Wang et al., 2014b). With synaptic-
level resolution achievable using such a scheme, it was 
possible to resolve submicrometer-sized spines inside a 
thy1-YFP line H mouse brain at depth (Fig. 3b). For 
a more densely labeled brain—wild-type mouse with 
viral GCaMP6s (Chen et al., 2013) expression—a 
single correction improved image quality from 427 μm 
to 547 μm depth; after AO correction, fine neuronal 
processes and even the much larger somata went from 
invisible to clearly resolvable.

Other indirect wavefront sensing methods have 
been used to improve the signal and contrast during 
in vivo brain imaging. Modal approaches have 
been used to improve image quality in two-photon 
imaging of the mouse brain in vivo (Galwaduge et al., 
2015; Park et al., 2017). Three-photon fluorescence 
microscopy, where longer excitation wavelengths 
lead to reduced light scattering and larger in vivo 
imaging depth (Horton et al., 2013; Ouzounov et al., 
2017), also benefits from AO correction (Sinefeld et 
al., 2015). The greater penetration depth of three-
photon excitation allowed transcuticle three-photon 
imaging of neuronal structures in the lateral horn 
of the fly brain, where a modal approach was used 
to correct the aberration introduced by the cuticle 
and the brain (Fig. 3c) (Tao et al., 2017). F-SHARP 
(Papadopoulos et al., 2017) can compensate for both 
aberrations and scattering, enabling the acquisition 
of high-contrast images inside turbid tissue, including 
zebrafish larva and mouse brain in vivo (Fig. 3d).

General rules
Some general rules can be recognized from these 
studies: 

(1) Aberrations in the adult brains are usually 
temporally stable when compared with the 
imaging period (Ji et al., 2012). This makes the 

speed of aberration correction a less crucial factor 
and allows both direct and indirect wavefront 
sensing methods to achieve effective corrections. 

(2) The mouse brain has limited curvature (often 
further reduced by the cranial window that presses 
on the brain), which allows a single correction 
to improve image quality over hundreds of 
micrometers in 3D (Ji et al., 2012; Wang et 
al., 2014b, 2015). The low spatiotemporal 
variation of brain-induced aberrations therefore 
facilitates the application of AO microscopy 
to mouse brains, where aberration correction 
needs to be performed only at the beginning of 
an imaging session, with the resulting correction 
improving the image quality throughout the 
hours of experiments to follow. In contrast, 
in highly curved samples such as zebrafish 
larval brain (Wang et al., 2015) or C. elegans  
(Wang et al., 2014b), corrective patterns are 
often highly local, and a single aberration 
correction may improve image quality only in 
the close vicinity (tens of micrometers) of where 
the wavefront was measured. For such samples, 
direct wavefront sensing, if applicable, is the 
preferred choice due to its high correction speed. 

(3) In scattering tissue (e.g., adult brains), to 
compensate for the exponential loss of ballistic 
photons with imaging depth, one has to increase 
the excitation power exponentially. Eventually, 
the electric field strength at the surface of the 
brain becomes high enough to generate a two-
photon fluorescence signal without the need 
for focal confinement. When the out-of-focus 
fluorescence signal overwhelms the in-focus 
signal, the ultimate imaging depth limit of 
two-photon fluorescence microscopy (2PFM) 
is reached (Theer et al., 2003). Because AO 
increases focal intensity and thus in-focus 
signal, but affects out-of-focus signal minimally 
(Wang et al., 2014b), correcting brain-induced 
aberrations increases the imaging depth limits. 

(4) One consistent observation is that correcting 
the same specimen-induced aberration improves 
the brightness of small features (e.g., synaptic 
terminals) more than large features (e.g., somata) 
(Ji et al., 2012; Wang et al., 2014b). This is because 
aberrations lead to an enlarged focal volume and 
weaker light intensity. The signal of small features 
approaching a point object depends on local light 
intensity, and thus is substantially reduced by 
the focal intensity loss in an aberrated focus. For 
large extended features, on the other hand, the 
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by the increase in focal volume, which allows 
more fluorophores to contribute to the final signal. 
In other words, whereas fluorescent probes and 
excitation strategies utilizing a longer wavelength 
range allow cell bodies to be visualized at increasing 
depths (Dana et al., 2016; Kondo et al., 2017; 
Ouzounov et al., 2017), AO is required when 
synapse-sized structures are to be imaged at depth.

High-Resolution Functional 
Imaging of Neurons In Vivo
An important class of neurobiology experiments 
involves measuring neural activity with fluorescent 
indicators. The most popular example is measuring 
calcium transients using genetically encoded calcium 
indicators (GECIs) (Chen et al., 2013; Yang and 

Yuste, 2017). AO correction leads to a more accurate 
characterization of the functional properties of neurons.

Similar to morphological imaging, AO correction 
improves the brightness and contrast of functional 
images (Fig. 4a). In addition, it has been consistently 
observed that the amplitude of calcium transients 
increases after AO correction (Ji et al., 2012; Wang 
et al., 2014b; Wang et al., 2015; Sun et al., 2016), a 
result of the reduced excitation focal volume and 
enhanced focal brightness after aberration correction. 
In brains densely labeled with fluorescent sensors (e.g., 
through bulk loading [Ji et al., 2012], viral injection 
[Wang et al., 2014b], or transgenic expression [Wang 
et al., 2015; Park et al., 2017]), another challenge 
arises: In addition to the more brightly labeled 
neurons of interest (the ones from which regions of 
interest [ROIs] are chosen), a spatially diffuse neuropil 
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Figure 4. AO improves the accuracy of calcium activity measurements. a, Calcium transients evoked by the stimulation of a 
drifting grating, 400 and 500 µm below pia in the primary visual cortex of a mouse (Thy1-GCaMP6s line GP4.3) without (left) 
and with (center) AO correction. Calcium transients at ROIs i–vi, without and with AO correction (right). b, Calcium transients 
(left) and tuning curves (center) for three different ROIs taken from images of GCaMP6s+ thalamic axons without (blue traces) 
and with (red traces) AO, at a depth of 170 µm. Top right, Percentages of nonresponsive (NR), not orientation selective (NOS), 
and orientation selective (OS) boutons; Bottom right, Cumulative distributions of gOSI for boutons measured without and with 
AO. Cranial window thickness is 170 µm. Scale bar: a, 20 µm. Modified with permission from Rodríguez and Ji (2018), Fig. 4. 
Copyright 2018, Elsevier.
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Because this signal is an average of many neurons 
and is generally less correlated with the stimulus 
feature, it is considered a contamination (Göbel 
and Helmchen, 2007). As explained in the previous 
sections, however, aberration correction increases the 
signal from our spatially confined ROI more than that 
from the neuropil contamination, and thus increases 
the strength of calcium transients.

AO correction also leads to a sharpening of the tuning 
curves for orientation in the mouse visual pathway, 
characterized by the selectivity of neurons toward 
drifting gratings of various orientations (Fig. 4).  
When imaging thalamic boutons located in the 
primary visual cortex of awake mice (Fig. 4b), the 
percentage of visually responsive boutons (as well as 
those classified as orientation selective) was found to 
steadily increase with decreasing amounts of aberration 
(Sun et al., 2016). For example, with a 340-μm-thick 
cranial window, 70% of all imaged boutons appeared 
to be nonresponsive to visual stimuli and only 7% 
satisfied orientation-selective criteria; with a thinner 
cranial window of 170 μm, 31% of boutons were 
found to satisfy orientation-selective criteria. After 
AO correction, 48% of boutons were found to satisfy 
orientation-selective criteria when the same boutons 
were imaged. Between the latter two conditions, 
correcting aberrations sharpens the orientation tuning 
curves and leads to an overall shift in the global 
orientation selectivity index (gOSI) distribution 
toward higher selectivity, more accurately reflecting 
the tuning properties of these synaptic inputs.

High-Speed In Vivo Imaging of the 
Brain with Bessel Focus Scanning
Because circuits and neurons are 3D structures 
that can extend over hundreds or thousands of 
micrometers, understanding their operations requires 
monitoring their activity at synaptic and cellular 
resolution in 3D at image rates that capture all activity 
events. In brains that strongly scatter light (e.g., adult 
brains), 2PFM is the only optical imaging method 
that provides submicrometer spatial resolution for 
imaging synapses and subsecond temporal resolution 
for capturing calcium events associated with action 
potentials. The most common applications of 2PFM 
involve scanning an excitation focus within a 2D 
plane while recording the fluorescence signals of 
GECIs, which provide information on both neuronal 

morphology and activity in this plane. The AO 
methods reviewed above allow 2PFM to achieve 
high-resolution images of the brain at depth. For 
volumetric imaging, however, conventional two-
photon fluorescence microscopes step the microscope 
objective or the sample in z to obtain 3D image 
stacks. There, the limited brightness of calcium 
indicators and the inertia of laser scanning units lead 
to low volume rates and preclude the study of activity 
synchrony in neurons distributed in a volume.

Recently, a volumetric imaging approach was 
developed based on Bessel focus scanning technology 
(Lu et al., 2017). For most in vivo brain imaging 
experiments, the positions of neurons and their 
synapses remain unchanged during each imaging 
session; thus, they rarely need to be constantly 
monitored and tracked in 3D. Therefore, volume 
imaging speed can be increased substantially by 
sacrificing axial resolution. Scanning an axially 
elongated Bessel focus in 2D (Fig. 5a) creates 
projected views of 3D volumes (Welford, 1960), 
leading to ten- to hundredfold increases in imaging 
throughput and reductions in total data size.

In Figure 5b, the volume imaging module is composed 
of a phase-only SLM and an annular mask array 
and incorporated into a two-photon microscope 
by placing it between the excitation laser and the 
microscope. A concentric binary phase pattern on 
the SLM generates a ring illumination at the focal 
plane of lens L1. After spatial filtering with an 
annular mask, the ring pattern is imaged onto the 
galvanometer scanners by lenses L2 and L3. This leads 
to an annular illumination on the back pupil plane 
of the microscope objective and an axially extended 
focus approximating a Bessel beam. With different 
phase patterns on the SLM, the Bessel module can 
generate foci extending 20–400 μm axially.

In one example that demonstrated the speed 
and resolution of Bessel volume scanning, sparse 
GCaMP6s+ neurites were imaged in the primary 
visual cortex of awake mice. With a Gaussian 
focus (NA 1.05; axial FWHM [full-width at half 
maximum] 1.4 μm), conventional 3D scanning 
required at least 36 2D frames to cover all spines 
with a volume extending 60 μm in z (upper panel, 
60 frames, Fig. 5c). In contrast, scanning with a 
Bessel focus (NA 0.4; axial FWHM 53 μm) in 2D 
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captured all the structures in one frame, reducing the 
data size by ~60-fold (lower panel, Fig. 5c). Using a 
two-photon fluorescence microscope with a resonant 
galvo, visually evoked calcium transients in axonal 
varicosities and dendritic spines within a 270 μm 
× 270 μm × 60 μm volume were measured at 30 Hz 
(Fig. 5d). Importantly, with Bessel scanning, the gain 
in volume imaging speed does not come at the cost 
of a reduction in lateral resolution; here the synapses 

(arrows in Fig. 5c) are clearly resolvable. Using Bessel 
foci optimized for in vivo imaging of fly, zebrafish, 
mouse, and ferret brains, 30 Hz volumetric calcium 
imaging with synaptic resolution was demonstrated 
in vivo. The extended axial range of Bessel foci also 
makes the imaging insensitive to axial brain motion, 
making it uniquely suitable for in vivo brain imaging 
of behaving animals.

© 2018 Ji
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Figure 5. Concept, design, and in vivo performance of Bessel focus scanning method. a, Top, Scanning a Gaussian focus images 
a thin section. Bottom, Scanning an axially elongated Bessel focus probes a volume. Left panels, axial images of Gaussian and 
Bessel foci. b, A Bessel module composed of an SLM, lenses L1-3, and an annular mask. FMs, flip mirrors to switch between 
Gaussian and Bessel modes. c, Top, Mean intensity projection of a 60-µm-thick image stack (color-coded by depth). Bottom, 
Same structures imaged at 30 Hz by scanning a Bessel focus. Insets: zoomed-in views of spines. d, Calcium transients measured 
in volumes of GCaMP6s+ boutons and spines measured at 30 Hz. Scale bars: a, Vertical, 25 µm; horizontal, 5 µm; c, 20 µm. 
Reprinted with permission from Lu et al. (2017), Fig. 1. Copyright 2017, Springer Nature.



60

NOTESConclusion
In conclusion, we reviewed recent works on in vivo 
imaging of the brain. All these studies have a common 
theme: by controlling the wavefront of the light used 
for image formation, one can achieve high-resolution, 
high-speed imaging for neurobiological inquiries.
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NOTESIntroduction
In this chapter, we propose a quantitative modeling 
framework to characterize and explain certain 
aspects of brain structure. Any quantitative modeling 
framework either implicitly or explicitly rests on a 
conceptual model. Although our conceptual model 
is not entirely novel, making it explicit reveals 
certain inadequacies of the existing neuroscience 
modeling frameworks and tools, thereby motivating 
the development of the strategy proposed below.

In our conceptual model, there are three “levels” of 
physical objects: a brain, a body, and a world (Fig. 1).  
Each level exhibits both internal dynamics and 
interactions across levels. These interactions occur 
across many orders of magnitude of both space and 
time. Our main interest is in modeling the brain, and 
in particular, brain structure, as will be seen below.

Starting from the outer level, the world governs 
the outcomes of the ongoing evolutionary “games” 
within various ecological niches. In these games, the 
brain and body must conspire to behave in ways that 
outcompete other brains and bodies for shared, limited 
resources. The body is the source of motor control as 
well as sensory input to the brain. It is therefore the 
required interface between the brain and the world. 
The brain is further divided into structure (e.g., 
neurons and glia) and activity (e.g., dynamics of ions, 
neurotransmitters, and second messengers).

From this perspective, it is clear that brain structure 
plays an integral role in brain activity, motor 
control, behavior, and eventually, the outcomes of 
evolutionary pressures (Cajal, 1995). In particular, 
brain structure governs motor sequences in a 
variety of ways. For example, a particular brain 
structure controls the suppressive hierarchy among 
competing motor programs that drives sequential 
grooming in Drosophila (Seeds, 2014). Similarly, the 
interscutularis neuromuscular circuit controls the 
mouse’s ear movements (Lu, 2009). In both cases, 
the brain structure must provide a foundation, as well 
as a set of constraints and biases, that guides brain 
activity. Thus, “understanding” the mechanism of 
those behaviors requires a model of brain structure.

That a model of brain structure is required to explain 
the brain’s output motivates the search for a model 
that explains brain structure itself. Brain structure 
is guided by two components. The first comprises 
developmental programs, which are encoded in the 
genome (Purves and Lichtman, 1985). Of course, the 
genome is partially determined by selective pressures 
imposed on previous generations in which some of 
the individuals were able to propagate their genes by 
choosing specific behaviors (and luck) (Tomasetti and 
Vogelstein, 2015). The second is activity-dependent 
plasticity, which is encoded in the rules governing, 
for example, spike-timing-dependent plasticity 
(Dan and Poo, 2006). Development and activity-
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Figure 1. The connectome code is a model characterizing how information from brain activity and the genome is represented 
in the brain by connections between morphological objects (the connectome).
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dependent plasticity are not fully independent; 
rather, much of development (and degeneration) is 
gated or guided by activity, for example, the onset of 
critical periods (Scott, 1962).

Connectomics
What is a connectome?
A connectome is typically defined as a network, 
the “Wij” of the brain of the brain (Hagmann, 
2005; Sporns et al., 2005). Recall that in graph 
theory, a network consists of a set of nodes and 
edges connecting them. In such a network, there 
is no physical space, no location, no connection 
strength, etc. Thus, as defined by graph theory, a 
network is a bit limiting and overly simplistic for the 
kinds of analysis and models that people are using 
to study connectomics. Here, we introduce a more 
general definition of a connectome, which includes 
(potentially multiscale) structural attributes, many of 
which are implicitly included in previous notions of 
a connectome.

Any brain network consists of nodes (also called 
vertices or actors) and edges (also called links or arcs). 
In brain networks, however, nodes are always spatially 
contiguous morphological objects whose extent 
and shape are determined by the spatiotemporal 
resolution of the experimental modality providing 
connectome data. For example, in nanoscale 
electron microscopy data, the nodes are typically 
individual neurons, whereas in macroscale magnetic 
resonance imaging (MRI) data, nodes may be defined 
by sulcul and gyral delineations. Thus, these nodes 
always have attributes, including absolute location 
in the brain. They often include relative position 
in a template brain, an associated shape, thickness 
for cortical areas, and branching morphology, and 
frequently have an associated hierarchical ontology 
of neuron types (Hodge et al., 2018) or regions (Mai 
et al., 2007; Hagmann et al., 2008). Similarly, the 
edges in nanoscale data can be either chemical or 
electrical synapses, whereas edges in macroscale data 
can be defined by correlations over brief epochs of 
time or large bundles of axons. As a result, these edges 
have a number of attributes, potentially including 
strength, size, sign, and more. Therefore, to answer 
the questions of interest requires a generalized notion 
of a network or graph, one that includes potentially 
complex vertex and edge attributes. In summary, we 
characterize the entirety of the brain structure at a 
particular scale as the “connectome”' of that region.

Why connectome coding?
Interest in studying the neural code is well 
established despite widespread disagreement about 

whether there is a single neural code, multiple codes, 
or one code per problem per species, etc. On the 
other hand, whether a connectome code is valuable 
is hotly debated. Here we outline a few basic reasons 
that connectome codes are not just valuable, but 
actually required for a complete understanding of 
brain function and dysfunction:

• It is widely conjectured that information in the 
brain is stored in neural circuits, also called the 
“memory engram” (Zhang and Linden, 2003). To 
the extent that this is true, our ability to understand 
and “read” memories will depend on the depth of 
our understanding of the statistics of these circuits.

• Another relatively widely held belief is that 
psychiatric illnesses are disorders of neural 
circuitry, or connectopathies (Castellanos et al., 
2013; Van Dam et al., 2017; Braun et al., 2018; 
Elliott et al., 2018; Powell et al., 2018; Spronk et 
al., 2018). Thus, our ability to develop clinically 
useful prognostic, diagnostic, and treatment 
protocols will also depend on our understanding 
of neural circuitry. In both cases, it remains an 
open question as to the required “precision” of 
the connectome code. For example, the degree to 
which a connectome code (at the level of neuron, 
cell type, or region of interest) will be useful 
for clinical practice remains an open empirical 
question.

• Neural activity depends on neural connectivity 
(Mill et al., 2017). The requisite additional 
information to create a sufficiently biofidelic 
simulation of a brain continues to be debated, but 
all simulations use some connectomic information 
(Markram et al., 2015).

• Finally, in the human brain, there are approximately 
1011 neurons (Herculano-Houzel, 2009) and 
1015 connections between pairs of neurons, and 
yet we have only ~3 × 104 genes (Ezkurdia et 
al., 2014). This means that the genome must 
genetically encode the “blueprint” of the brain, 
that is, a number of statistical rules governing the 
probability of synapses between regions throughout 
development, as well as all the rules for learning 
new connections due to environmental exposures. 
Thus, evolution must have learned a connectome 
code for humans, one that we should be able to 
learn from data.

The above arguments motivate building statistical 
models for connectome coding, but why can we not 
simply use the models already developed for neural 
coding? There are two key differences between 
connectome coding and neural coding that make 
connectome coding substantially more difficult. First, 
a spike can reasonably be modeled as a function of only 
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a single neuron, whereas an edge is fundamentally 
a function of two nodes. This complicates matters 
because even the simplest models become bilinear 
(linear in both nodes) versus linear (linear in 
one node). Bilinearity increases the difficulty of 
estimating parameters, both computationally and 
statistically. Second, spikes are fundamentally binary 
operations: a spiking neuron either spikes or does 
not, to convey information to downstream neurons. 
However, connections between nodes are not binary. 
Even individual synapses can vary dramatically in 
volume and the maximum magnitude of an average 
evoked potential. Estimated connectomes are also 
typically weighted, whether they correspond to 
estimates of the functional or structural relationship 
between the nodes. Connectomists are therefore 
faced with a decision: either choose a mechanism for 
converting weighted networks into binary networks, 
or develop models for weighted networks. In either 
case, this is an additional step not required of those 
modeling spike trains.

Example connectomes
Next we describe several different estimates of 
connectomes spanning the phylogenetic tree and 
spatiotemporal scales. We will use these connectomes 
as working examples to illustrate the power and 
flexibility of our proposed connectome coding 
framework.

Caenorhabditis elegans
Caenorhabditis elegans is the only animal for which 
we have a complete, neuron-to-neuron level 
connectome. In the C. elegans connectome, edges are 
either chemical synapses (which are directed) or gap 
junctions (which are bidirectional or “undirected”). 
Each edge’s strength or weight corresponds to the 
number of synapses between its parent neurons. 
There are two sexes of C. elegans, the male and the 
hermaphrodite, with different numbers of neurons 
(the male has more, although most of the neurons 
are shared between the two sexes, but not all). 
Thus, each sex has a weighted, partially directed 
multiconnectome. These connectome estimates are 
derived by cumbersome manual tracing of axons and 
dendrites, and identification of synapses, in nanoscale 
electron micrographs (White et al., 1986) and were 
updated by Varshney et al. (2011) and Bentley et al. 
(2016). The neurons are often divided into three 
classes: sensory (S), internal (I), and motor (M), 
most of which are bilaterally symmetric, although 
not all the motor neurons have lateral counterparts 
(Fig. 2A).

Drosophila
Eichler et al. (2017) performed one of the most 
recent and comprehensive characterizations of a 
connectome. They published a complete larval 
Drosophila connectome of the mushroom body, 
also derived from serial electron microscopy, using 
only chemical synapses, making this connectome 
weighted and directed. They estimated connectivity 
from both the left and right mushroom body. Neurons 
are categorized into Kenyon cells (K), input neurons 
(I), output neurons (O), and projection neurons (P) 
(Fig. 2B).

Mouse connectivity atlas
Calabrese et al. (2015) generated a high-resolution 
connectivity atlas using ex vivo diffusion MRI 
(dMRI). This network is undirected, as dMRI lacks 
directional information, and weights correspond to 
the number of tracts estimated to go from one region 
to another. Regions in the mouse connectome can be 
partitioned into “superstructures,” including frontal 
(F), hindbrain (H), midbrain (M), and white matter 
(W) (Fig. 2C).

Human connectomes
The Consortium for Reliability and Reproducibility 
(Zuo et al., 2014) collects multiple measurements of 
anatomical, resting-state, and/or dMRI per individual. 
They analyze the multiconnectomes, including 
functional MRI (fMRI)–derived and dMRI-derived 
estimates, by averaging the entire dataset consisting 
of 3067 dMRI and 1760 fMRI connectomes. The 
work of Kiar et al. (2018) provides the largest 
open-access repository of human connectomes. 
Additionally, average per-gender dMRI connectomes 
are estimated from 612 female subjects and 613 male 
subjects. Of the many possible brain parcellations 
(Glasser et al., 2016), we elected to use the Desikan 
parcellation (Desikan et al., 2006), assigning each 
cortical region into lobes, including frontal (F), 
occipital (O), parietal (P), and temporal (T), as well 
as subcortical structures (S) (Fig. 2D).

Proposed connectome coding 
framework 
Adopting notation typical of neural coding, let 
S denote a realized stimulus and R denote the 
realized response. We model both the stimulus and 
the response as random variables, denoted S and 
R, respectively. The neural encoding problem is to 
estimate the conditional distribution of a neural 
response given the stimulus, FR|S, whereas the neural 
decoding problem is to estimate the distribution 
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of the stimulus given a response, FS|R . The joint 
distribution of the response and the stimulus can be 
written in terms of either conditional distribution, 
using Bayes’ rule:

FR,S = FR|S × FS = FS|R × FR. (1)

For connectome coding, we need to define some 
additional concepts and notation. Denoting a 
network by  = (V , Ɛ), where V is the set of nodes, 
and Ɛ is the set of edges, the number of nodes is n = 
|V|. Throughout, we will refer to the “nodes,” which 
might represent neurons or regions of interest, as 
appropriate. We can represent a network by an n × n 

© 2018 Vogelstein

Figure 2. A–D, Connectomes spanning four levels of the phylogenetic tree, each acquired using different experimental modalities 
and spatial resolutions, ranging from nanoscale (electron microscopy) to macroscale (MRI regions). In each case, the connectomes are 
depicted as weighted adjacency matrices; for C. elegans and the human, the connectomes are multiconnectomes with two different 
edge types denoted by two different colors. In each case, the vertices are sorted by region. Moreover, along each connectome, we 
provide the degree sequence, that is, the “degree centrality” for each node and modality (Zuo et al., 2012). G + C, gap and chemical. 
E, Density estimates of the non-zero edge weights per connectome. The annotated line on each density estimate indicates the average 
non-zero edge weight. The fly mushroom body (a binary graph) is not shown, as all non-zero edges have weight 1. F, The fraction of 
edges per connectome that are non-zero. The connectomes display sizable disparities in both non-zero edge weight and fraction of 
non-zero edges.
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adjacency matrix, A. If G + C, gap and chemical. the 
connectome is binary (meaning having no weights on 
edges), then the existence of an edge between node 
u and node v is indicated by A(u, v) = 1; otherwise, 
A(u, v) = 0. If the connectome is weighted, then  
A(u, v) can take any real value. If the connectome 
allows for self-connections (also called self-loops), 
then it is possible that A(u, u) = 1 for any u, but 
otherwise not. If the connectome is undirected, then 
A(u, v) = A(v, u) for all (u, v) pairs. The total number 
of possible edges, ne , depends on whether the network 
is directed and whether it allows for self-loops. If 
both, then ne = n2. If neither is allowed, then ne = (n 2 ). 
 We will see examples of weighted and unweighted, 
directed and undirected networks, both with and 
without loops.

To build statistical models of connectomes and 
connectome code requires introducing the concept of 
random variables, as in neural coding. Let A denote 
a random adjacency matrix (which is akin to the 
response in neural coding), and let X be the random 
variable whose values denote some properties of the 
genome, body, and/or world. Then we can write the 
joint distribution of the connectome and other stuff as:

FA,X = FA|X × FX = FX |A × FA. (2)

For simplicity, this chapter will focus on the 
connectome encoding problem, that is, determining 
FA|X , which requires a previous model FA to build on. 
In a connectome with n nodes and n2 potential binary 
edges, there are 2n2 possible different connectomes. 
Note that this means that the number of possible 
connectomes grows at a super-exponential rate. For 
example, when n = 10, 2n2 = 1030, and when n = 30, 2n2 
= 10280! This is in contrast to the number of seconds 
since the big bang (≈1020), the number of molecules 
in the universe (≈1080), the number of possible 
chess games (≈10120), and the number of possible 
Go games on a 19 × 19 board (≈10170). Because 
connectomes are fundamentally categorical objects, 
without further assumptions, the “nonparametric” 
connectome model would be that A ~ F (θ), where F 
is a categorical distribution with parameter

θ = (θ1, . . . , θ2n2 ).

Clearly, two parameters are far too many to be 
able to estimate with reasonable sample sizes, even 
for the smallest connectomes. Thus, connectome 
coding requires making a number of simplifying 
assumptions to enable empirically useful estimates. 
Below we describe several increasingly complex 
models of connectomes. For each, we introduce the 
corresponding neural code.

Edge Models
Independent edge models
The simplest statistical model characterizing neural 
spiking activity is a Poisson (point) process. Under 
a Poisson process, spiking events are independent 
of one another and have a fixed rate. By analogy, 
the simplest connectome model is the Erdös–Rényi 
(ER) random graph model. The ER model posits that 
the probability of an edge anywhere in the graph is 
independent of all other edges and everything else 
(Erdös and Rényi, 1959). This model is clearly too 
simple to provide an interesting representation 
of brain networks. The simplest and slightest 
generalization of the ER model is a weighted ER 
(WER) model. We assume here a slightly different 
WER model from those previously proposed 
(Garlaschelli, 2009); specifically, our WER model 
is model-free: we specify only the average weight 
per connection. Whereas the WER model yields 
the simplest connectome code for dense, weighted 
connectomes, many connectome estimates are sparse 
(including a large number of zeros), and the non-zeros 
are not all equal to one another. In this case, a “zero-
inflated WER” (ZWER) model is the simplest choice 
(Tang et al., 2017a). This model is a mixture of an ER 
model and a WER model, with a parameter governing 
the probability that the edge has a non-zero weight. 
For each of the above described connectomes, the 
maximum likelihood estimator (MLE) is readily 
available in closed form for both the probability of 
an edge and the average weight of edges. Figures 2E 
and 2F show these parameters for each of the above 
described connectomes. The ZWER is a “first order” 
(1°) connectome model.

Conditionally independent edge 
models
Independent spike/edge models are not sufficient 
to characterize the variability of neural activity or 
connectivity. Thus, the next simplest model is a 
conditional model, where the probability of a spike 
or edge is a function of something else. In the neural 
coding case, for simplicity, assume there are several 
possible stimuli (e.g., moving bars in one of eight 
possible directions), and the firing rate of a given 
visual neuron is a function of the direction. The 
analogous conditionally independent, random graph 
model for connectomes is the stochastic block model 
(SBM) (Holland et al., 1983). In an SBM, each node 
has a “type,” and the probability of an edge between a 
pair of nodes is dictated by the type of each node. This 
is akin to the situation described earlier, where the 
probability of a spike is conditioned on the stimulus; 
here, the “stimulus” corresponds to “node type,” 
which could indicate excitatory versus inhibitory, 
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cortical layer, gyral region, hemisphere, etc. In our 
estimated connectomes, the edges have weights that 
can vary by orders of magnitude. Thus, if we were 
to naively estimate the average weight, the large-
magnitude weights would dominate. In practice, we 
therefore consider two common transformations. For 
the C. elegans and human connectomes, we “pass-to-
ranks” (Wang et al., 2015; Tang et al., 2017b), which 
converts the magnitudes to their relative order and 
is a standard tactic in robust statistics (Huber and 
Ronchetti, 1981). For the mouse connectome, we 
log-transform the weights after adding one to reduce 
the heavy log-linear tail of the edge distribution 
(Tang et al., 2016). Both of these are special cases 
of a weighted SBM (WSBM). The parameters for 
the WSBM are also available in closed form. Figure 
3 shows several different examples of estimated 
WSBMs. The assumed block structure follows from 
the neuron types and hierarchical parcellation 
schemes described in “Example connectomes,” 
above. The WSBM is a 2° connectome model.

Latent variable models
In the above models, the probability of an “event” 
(either a spike or an edge) is conditionally dependent 
on some observed variable. It is also possible to model 
these events as conditionally dependent on latent 

variables. In neural coding, it has recently become 
popular to use latent variable models to characterize 
an ensemble of neural activities (Cunningham and 
Yu, 2014). In connectome coding, latent variable 
models assume a latent variable per node. The 
simplest variant is the a posteriori SBM, which is the 
same as the SBM except that the Xs are not observed; 
rather, they must be estimated (Wasserman and 
Anderson, 1987). A generalization of this model is 
the “latent position model” in which Xs are no longer 
categorical, but rather continuous and potentially 
multivariate (Hoff et al., 2002). A particularly 
prominent special case of the latent position model 
is the “random dot product model” (RDPM) (Young 
and Scheinerman, 2007; Scheinerman and Tucker, 
2009). We define the weighted RDPM much like 
the weighted SBM (Tang et al., 2017a). While 
technically, one can obtain the MLE for the RDPM, 
doing so is rather computationally taxing (Bickel et 
al., 2013). Instead, it turns out that computing an 
eigendecomposition of the adjacency (or Laplacian) 
matrix of the connectome yields a consistent estimate 
of the latent positions under the RDPM with modest 
additional assumptions (up to an irrelevant rotation) 
(Rohe et al., 2011; Sussman et al., 2011). Figure 4 
shows this “adjacency spectral embedding” approach 
to estimating the latent position on the six example 
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Figure 3. WSBM estimates of the six connectomes depicted in Figure 2, indicating the average edge weight between communities 
of vertices.
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connectomes. For each, the color and/or symbol 
corresponds to a true latent category. It is evident 
from the plots that the latent positions correspond 
to these observed categories. The WRDPM is a 3° 
connectome model.

Latent structure model
In neural coding, some of the latent variable models 
impose some structure on the data, such as refractory 
periods or smooth dynamical systems (Kass et al., 
2014). Similarly, connectomes exhibit additional 
latent structure beyond mere “types.” Consider, for 
example, Figure 4(D.i), human dMRI: each node in 
this connectome has both a hemispheric label as well 
as a lobe label. A model with multiple categorical 
labels is related to, but distinct from, the mixed 
membership SBM (Airoldi et al., 2008) and the 
generalized RDPM (Rubin-Delanchy et al., 2017). 
We therefore introduce the latent structure model 
(LSM) and the weighted LSM (WLSM), which can 
characterize many different latent structures. (See 
Priebe et al., 2017, and Athreya et al., 2018, for 

mathematical details; the latter describes the LSMs 
that impose parametric and geometric requirements 
on networks.) Figure 5 shows a concrete example 
wherein the LSM fits a quadratic one-dimensional 
manifold into a six-dimensional embedded space, to 
the positions of the Kenyon cells. It turns out that both 
the left and the right mushroom-body connectome 
exhibit the same latent structure. A third example 
of latent structure is hierarchical structure, such as 
the hierarchical SBM. Lyzinski et al. (2017) showed 
that the Drosophila medulla connectome exhibits a 
hierarchical structure, corresponding to the known 
anatomical structure of the medulla (Takemura et 
al., 2013, 2015, 2017). The WLSM is a 4° model of 
connectomes.

Population models
In neural coding, population models typically refer 
to populations of neurons rather than populations 
of individuals (although not so in a human-brain 
imaging population). In connectome coding, 
however, population models correspond to at least 
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Figure 4. Adjacency spectral embeddings of the six example connectomes. A–D, Two-dimensional (2D) scatter plots where each 
cluster (as defined a priori) of nodes is fit with a Gaussian function, and the region of latent space where the likelihood is highest 
for a given Gaussian function is colored accordingly. E, Fraction of nodes within their most likely region, compared with the 
fraction under a chance assignment that assigns each node to the most likely class. Note that the 2D embedding and Gaussian 
fit are significantly more accurate than chance for all connectomes. Neuron types in A: I, internal; M, motor; S, sensory. Neuron 
types in B: I, input neurons; K, Kenyon cells; O, output neurons; P, projection neurons. Regions in the mouse connectome parti-
tioned into “superstructures” in C: F, frontal; H, hindbrain; M, midbrain; W, white matter. Cortical region lobes in D: F, frontal;  
O, occipital; P, parietal; T, temporal; S, subcortical structures.
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Figure 5. A, WLSMs; B–D, Weighted MRDPM models. A, A projection onto two dimensions of the six-dimensional estimated 
curve for the structural support of the Kenyon cell neurons and point masses for the other neuron types (all convolved with 
Gaussians). MB, mushroom body. Neuron types: I, input neurons; K, Kenyon cells; O, output neurons; P, projection neurons.  
B, Joint embedding for C. elegans; and C, humans. Shape and color indicate the node type, and the lines join vertices matched 
across sex or modality. Neuron types in B: I, internal; M, motor; S, sensory. Cortical region lobes in C: F, frontal; O, occipital;  
P, parietal; T, temporal; S, subcortical structures. D, Fraction of nodes within their most likely region, compared with the fraction 
under a chance assignment that assigns each node to the most likely class.
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two connectomes. Several population models have 
recently been proposed, all of which are essentially 
mixtures of RDPMs (MRDPM) (Durante and 
Dunson, 2014; Durante et al., 2017; Levin et al., 
2017; Wang et al., 2017; Rosenthal et al., 2018; 
Zhang et al., 2018) (Levin et al., 2017, describes the 
omnibus methodology for inference on populations 
of networks.) Two different strategies have been 
proposed for estimating the latent positions in 
these models: tensor factorization and “omnibus” 
embedding. In omnibus embedding, a joint matrix 
is constructed by placing the adjacency matrices of 
each connectome along the diagonal of an omnibus 
matrix, and augmenting the off-diagonal blocks 
with combinations of the original connectomes 
(a technique also used in multiview learning) 
(Lindenbaum et al., 2015). The result is that the 
connectomes are embedded together, and the 
correspondence between vertices in complementary 
connectomes can help reduce the variance of 
the estimates. Here again, theory asserts that 
the estimates should converge under reasonable 
assumptions. Figure 5 shows four examples that 
utilize this omnibus procedure. In each case, many 
corresponding nodes are in close proximity, thereby 
improving the clustering of various categories 
between graphs with disparate characteristics. The 
MRDPG is a 5° connectome model, explicitly 
designed for populations of connectomes.

Conclusion
This chapter introduced and summarized the basic 
concepts and preliminary examples of connectome 
coding. An open-source R package containing all the 
functions required to estimate any of the models on 
network data is available at https://neurodata.io/ and 
https://github.com/neurodata/graphstats (Bridgeford 
et al., 2018).

Many gaps remain in our knowledge and capabilities 
with regard to connectome coding. Our intermediate 
goal is to continue to develop theory, methods, and 
applications for zero-inflated, weighted LSMs for 
individuals and populations, including statistically 
and computationally efficient estimation and 
hypothesis testing in these models (Tang et al., 
2017c). Incorporating network, vertex, and edge 
attributes into these frameworks is yet another future 
direction. Connectome coding therefore presents 
a substantial opportunity for discovery in the brain 
sciences.
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NOTESIntroduction
Calcium imaging has become the dominant method 
for making recordings from large populations of 
neurons, owing to several well-known advantages:  
(1) it offers subcellular spatial resolution with cell-
type specificity and can be coupled easily with a 
variety of genetic tools; (2) it has proven scalability 
to record simultaneously from O(104) neurons in vivo; 
and (3) it allows for longitudinal tracking of cellular 
activity across multiple days.

At the same time, calcium imaging presents 
some important analysis challenges: calcium 
signals represent a slow, nonlinear encoding of 
the underlying spike train signals of interest, and 
therefore it is necessary to denoise, temporally 
deconvolve, and spatially demix calcium video data 
into estimates of neural activity. In addition, calcium 
imaging produces datasets that can be quite large 
(hundreds of gigabytes per hour in some cases); thus, 
analysis methods must be scalable and as automated 
and reproducible as possible.

This chapter presents an overview of state-of-the-art 
analysis methods for calcium imaging data, with a 
focus on data recorded at single-neuron resolution. 
We will also touch briefly on the analysis of voltage 
imaging data and wide-field calcium imaging data, 
both of which come with their own related but 
distinct analysis challenges.

Steps in a Calcium Imaging 
Analysis Pipeline
We begin with an overview of the typical steps in a 
modern calcium imaging analysis pipeline (Fig. 1). 
After correction of low-level issues (e.g., different 
gains or noise levels on different pixels in CMOS 
cameras, or line-to-line phase errors in multiphoton 
scanning imaging), the dataset in movie format is 
motion-corrected to remove artifacts arising from 
brain motion and slow imaging rate (Figs. 1a,b). 
Next the movie is denoised and compressed into a 
smaller format. Subsequently, the movie is demixed 
to extract a shape and temporal trace corresponding 
to each neural component (Fig. 1c). These temporal 
traces represent the average fluorescence within each 
spatial component in each temporal frame and are 
therefore an indirect measure of neural activity; these 
traces can be temporally deconvolved to estimate the 
underlying activity of each corresponding neuron. 
Finally, an imaging experiment can visit the same 
field of view (FOV) over the course of multiple 
sessions or days (Fig. 1d). To combine the results from 
multiple sessions, the components from the different 

sessions need to be registered. Below we discuss each 
of these steps in more detail.

Motion correction
Motion artifacts in calcium imaging datasets can 
arise from natural brain movement. For a small FOV, 
this motion can be approximated as rigid, and can 
usually be corrected using standard template-based 
registration methods (Thevenaz et al., 1998). (In 
general, motion within the imaging plane is easier 
to correct; in contrast, motion out of the imaging 
plane can cause artifacts in which cells pop in and 
out of the plane, and therefore appear to turn on and 
off, respectively. Extending the depth of field can 
ameliorate this problem to some degree.) However, 
in multiphoton imaging data, brain motion can be 
faster than the raster scanning imaging rate, resulting 
in nonuniform motion artifacts within a data frame; 
nonrigid registration methods have been developed 
to handle these effects (Dombeck et al., 2007; 
Greenberg and Kerr, 2009). For larger FOVs, the 
rigid motion approximation is often insufficient; to 
handle this shortcoming, we can split the FOV into 
smaller spatial patches, compute motion corrections 
within each patch, and then combine the results 
over patches (Pnevmatikakis and Giovannucci, 
2017). This local “patchwise” processing approach 
helps parallelize computation and enables scalability 
to very large datasets, and will be a recurring theme 
in this chapter.

One significant problem requires further 
development: tracking activity with single-neuron 
resolution in small moving animals with flexible 
nervous systems, e.g., larval zebrafish (Cong et 
al., 2017), Drosophila (Bouchard et al., 2015), or 
Hydra (Dupre and Yuste, 2017). Although good 
solutions have been developed in Caenorhabditis 
elegans (Christensen et al., 2015; Venkatachalam 
et al., 2016; Nguyen et al., 2017), demixing of fast 
cytosolic (nonnuclear-localized) signals in small 
flexible animals remains an unsolved problem. We 
expect nonrigid registration approaches similar to 
those developed by Pnevmatikakis and Giovannucci 
(2017) to be helpful here.

Denoising and compression
To facilitate visualization and further processing 
at this stage, it is useful to denoise the data—i.e., 
to separate the signal from the noise and discard 
the noise—and compress the signal into a format 
that can be stored and processed more efficiently. 
Denoising is particularly useful for fast or low-
intensity imaging methods for which photon count 
noise may be relatively high compared with the 
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Figure 1. Typical analysis pipeline for calcium imaging data. a, The data are first processed for removing motion artifacts. b, This 
can be done by estimating a motion field from aligning each data frame to a template. c, Subsequently, the locations of the 
neurons in the imaged FOV and their activity are extracted. Neurons can appear as spatially overlapping owing to limited axial 
resolution, and their activity needs to be demixed. The activity of each neuron (spikes, gray stars) can be estimated from its corre-
sponding fluorescence trace. d, Left, Middle, Registration of components produced by imaging sessions with the same FOV over 
the course of different days. Right, Neurons that are active in all or only some of the imaged sessions are identified. The different 
steps of the pipeline are displayed on mouse in vivo cortex data, courtesy of S.A. Koay and D. Tank (Princeton University). Results 
were obtained using the CaImAn package (Giovannucci et al., 2018). Scale bars: b, 50 µm; c, 10 µm; d, 30 µmµ. Calibration: 
vertical indicates 50% increase relative to baseline fluorescence; horizontal, 5 s.
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applied here (Mukamel et al., 2009; Pachitariu et al., 
2017). Recently, Buchanan et al. (2018) pointed out 
that the statistical model underlying PCA is not very 
well matched to functional imaging data, leading 
to relatively slow computation and suboptimal 
separation of signal from noise. By incorporating 
a more appropriate statistical model (exploiting 
the fact that signals are local in space, and the 
dominant noise sources are temporally and spatially 
uncorrelated), Buchanan et al. (2018) developed a 
patchwise penalized matrix decomposition approach 
that achieves significantly faster computation 
and improved denoising and compression (~2–
4× increases in signal-to-noise ratio [SNR] and 
compression rates of 20–300×, with minimal visible 
loss of signal). Notably, these methods are effective 
across a wide variety of functional imaging data, 
including single-photon, multiphoton, calcium, 
voltage, wide-field, and single-cellular resolution, 
with no manual parameter adjustment required.

In some datasets, it is necessary to include a 
detrending step here to remove photobleaching 
effects (Buchanan et al., 2018). In addition, some 
approaches (e.g., wide-field calcium imaging) 
require another step to remove contamination from 
hemodynamic signals (Ma et al., 2016). Because of 
space constraints, we will not review either of these 
issues in depth here.

Demixing
The next task is to demix activity from the multiple 
spatially overlapping neurons visible in the FOV into 
separate components. (This problem is analogous 
to the “spike-sorting” problem from classical 
extracellular electrophysiology.) A natural approach 
is to model the observed movie data as follows:

                          K

Y(x, t) = Σ ai (x)ci (t) + B(x, t) + εx,t . (1)
              i = 1

Here Y(x, t) denotes the observed fluorescence at 
location x and time t, and ai and ci denote the spatial 
footprint and fluorescence trace, respectively, of the 
i-th neural component, with K denoting the number 

of neurons visible in the FOV.1 B(x, t) denotes the 
neuropil/background activity and εx,t measurement 
noise, respectively; the background B(x, t) represents 
the summed contributions from processes that cannot 
be reliably separated into single-neuron components.

Equation 1 is a reasonable starting point, but it is 
not yet a fully specified statistical model in which 
all the components are identifiable (since we could 
trivially set B(x, t) to equal Y(x, t) and fully explain 
the observed data). To make further progress, we need 
to introduce statistical assumptions or constraints on 
the model components, and then develop efficient, 
scalable algorithms for inferring the components 
from data. Different choices for these constraints 
have led to different algorithms based on Equation 
1. For example, the independent components 
analysis (ICA) approach in Mukamel et al. (2009) 
does not constrain the spatial components ai (and 
discards B(x, t) from the model) while searching for 
maximally independent temporal components ci . 
The constrained nonnegative matrix factorization 
(CNMF) approach developed in Pnevmatikakis et al. 
(2016) imposes nonnegativity and sparsity constraints 
on ai and ci and models B(x, t) as a low-rank matrix 
within small spatial patches; by incorporating a more 
appropriate statistical model, CNMF achieves better 
performance than the less structured ICA approach. 
Pachitariu et al. (2017) use a similar CNMF approach, 
but with a slightly different objective function 
and background model. Giovannucci et al. (2017) 
developed a real-time CNMF implementation that 
processes incoming data online, one imaging frame at 
a time, enabling closed-loop experiments. Zhou et al. 
(2018) introduced a more flexible model for B(x, t) 
to handle data from one-photon imaging approaches, 
where background contributions from out-of-focus 
light are much more severe than in multiphoton data; 
if these background effects are not handled correctly, 
strong spurious correlations between neighboring 
neurons can corrupt downstream analyses. Buchanan 
et al. (2018) introduced a new, more robust method 
for initializing the CNMF model and demonstrated 
significantly improved performance on spatially 
extended dendritic signals; they also showed that 
the CNMF approach can be extended to handle 
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1  It is useful to distinguish this demixing problem from simpler segmentation problems that are the subject of large computer 
vision and biological image processing literatures. In a segmentation problem, we would want to assign each pixel to at most a 
single neuron, so for each location x, at most one ai(x) would be allowed to be nonzero. Instead, in Equation 1 we allow multiple 
neurons i to contribute to a given pixel x, since even in the multiphoton imaging setting, a single diffraction-limited excitation 
spot will often excite fluorophores from multiple neurons. Correctly assigning fluorescence signals to each neuron (i.e., solving 
the full demixing problem) is particularly critical for any downstream analyses of the correlations between neighboring neurons.
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(2018) incorporated a convolutional artificial neural 
network to help initialize new neural components in 
online CNMF, building on earlier work by Apthorpe 
et al. (2016) and Klibisz et al. (2017). The approaches 
developed in Zhou et al. (2018), Giovannucci et al. 
(2018), and Buchanan et al. (2018) all incorporate 
patchwise processing to scale to very large movies. 
Several other papers have developed approaches 
based on Equation 1, including Maruyama et al. 
(2014), Andilla and Hamprecht (2014), Haeffele 
and Vidal (2017), Inan et al. (2017), Takekawa et 
al. (2017), Nöbauer et al. (2017), and Petersen et al. 
(2017), but we lack the space to review all of their 
work here.

Benchmarking
One major open issue is the lack of so-called gold-
standard datasets that can be used to objectively score 
algorithm performance. The iterative optimization 
of open-sourced algorithms on agreed-upon standard 
datasets has been a critical theme enabling progress 
in modern machine learning (Donoho, 2017). Some 
gold-standard datasets have been developed for the 
segmentation problem of finding nuclei or somas in 
calcium imaging data, either via manual annotation 
or the segmentation of datasets in which neurons 
coexpress a static structural indicator (see, e.g., 
http://neurofinder.codeneuro.org/ for some example 
datasets). However, these segmented datasets can 
be unreliable: expression of structural indicators 
does not discriminate between active and inactive 
neurons, and is not guaranteed to be constrained 
only to neurons where the functional indicator is 
expressed. Moreover, as shown in Giovannucci et al. 
(2018), individual manual annotations can be highly 
variable, with different labelers disagreeing by up to 
20% on the same dataset. Finally, these segmented 
datasets only partially indicate some of the (somatic) 
pixels within the spatial components ai, and do not 
provide ground-truth data for the primary objects 
of interest in the demixing problem (i.e., the full 
demixed spatial and temporal components ai and 
ci). Ground truth for the temporal components 
would be important for assessing the robustness of 
demixing methods to neuropil contamination or 
contamination from small spatially overlapping 
neurites (Gauthier et al., 2017).

Thus, the curation of fully spatiotemporal gold-
standard demixing datasets remains a critical 
challenge; the IARPA MICrONS (Machine 
Intelligence from Cortical Neurons) project (www.
iarpa.gov/index.php/research-programs/microns) 
will soon deliver public datasets that combine large-
scale electron microscopy with calcium imaging in 

the same cortical volumes, and will therefore serve 
as a major step forward in this direction. Meanwhile, 
realistic generative models (Song et al., 2017a) can 
also generate useful simulated ground-truth data.

Toward optimal computational imaging and 
extensions beyond calcium imaging
One major trend we see guiding research in this 
area over the next several years involves the joint 
optimization of experimental design and analysis 
methods in order to image larger populations at 
higher temporal resolution. The suboptimality of, for 
example, optimizing an imaging apparatus in isolation 
is widely recognized; instead, the full experimental 
preparation, imaging technology, and computational 
analysis approach should be considered as parts of a 
pipeline to be optimized as a whole. Many researchers 
(Pnevmatikakis and Paninski, 2013; Yang et al., 2016; 
Prevedel et al., 2016; Friedrich et al., 2017a; Lu et al., 
2017; Song et al., 2017b; Kazemipour et al., 2018) 
have offered variations on a theme: spatial resolution 
can be usefully traded off for temporal resolution. 
That is, we can record from more cells and/or with 
higher temporal resolution if we are willing to accept 
a lower ratio of pixels per cell. Moreover, previous 
information about cell shapes and locations can shift 
the favorable point of this trade-off even further: 
once we know the locations and shapes of the cells 
in the FOV, we can reduce our spatial resolution even 
more without negatively impacting the quality of the 
recovered temporal neural activity (Pnevmatikakis 
and Paninski, 2013; Yang et al., 2016; Friedrich et al., 
2017a; Kazemipour et al., 2018). All these approaches 
can be cast in the same mathematical framework: 
instead of directly observing Y in Equation 1, we 
observe W Y instead, where W is some linear operator 
that depends on the details of the imaging technique. 
A number of generalized demixing approaches have 
been developed to handle these data types; we expect 
to see continued algorithmic development in this 
direction in the near future. Simulators such as those 
developed in Song et al. (2017a) will again likely 
play a useful role in the ongoing joint optimization 
of demixing methods and hardware design, as we 
push the limits of critical imaging-system parameters 
such as labeling density, imaging speed, SNR, and 
FOV size (and the number of neurons observed 
simultaneously).

Although this chapter focuses on calcium imaging, 
many similar themes will hold for voltage imaging at 
single-cell resolution (Buchanan et al., 2018), which 
is expected to be a major growth area during the next 
decade (Xu et al., 2017). Of course, voltage imaging 
methods also provide the opportunity to record at 
subcellular resolution, at multiple points along the 
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NOTESdendrite and axon. Once these imaging methods 
become more mature, we expect to see rapid growth 
in statistical methods for extracting information from 
this noisy spatiotemporal data; earlier works offer 
algorithmic starting points for modeling voltage data 
with subcellular resolution (Huys et al., 2006; Huys and 
Paninski, 2009; Paninski, 2010; Pakman et al., 2014).

Deconvolution
The demixing methods discussed earlier in this chapter 
output temporal components ci for each neuron in the 
FOV; ci (t) is proportional to the average fluorescence 
in neuron i at time t (Eq. 1). Deconvolution methods 
aim to estimate the activity of each neuron i given 
the extracted fluorescence trace ci. This problem 
can be challenging because of several factors: the 
unknown and often nonlinear nature of the indicator 
dynamics, the presence of measurement noise, and 
the relatively low imaging rate of typical calcium 
recordings. A popular approach assumes linear and 
time-invariant dynamics, expressing the fluorescence 
trace c as the sum of the calcium transients due to 
neural activity plus measurement noise:

                  N

c(t) = Σsj h(t − tj) + b + εt .  (2)
                 j = 1

Here tj, sj denote the time and amplitude of the j-th 
transient, h is a causal function denoting the shape of the 
transient, and b, εt denote the (possibly time-varying) 
baseline and measurement noise at time t. Transients 
are characterized typically by fast rise followed by a 
slower decay. This behavior can be modeled using a 
simple single or double exponential model. Under 
these assumptions, the deconvolution problem can 
be cast as a convex optimization problem that can be 
solved efficiently. See Vogelstein et al. (2010) for early 
work in this direction, and Pnevmatikakis et al. (2016), 
Jewell and Witten (2017), and Tubiana et al. (2017) 
for more recent advances. Fast online formulations 
are also available (Friedrich et al., 2017b; Jewell 
et al., 2018), and methods based on more-detailed 
biophysical models, including nonlinearities, have 
been developed (Vogelstein et al., 2009; Deneux et al., 
2016; Greenberg et al., 2018). Finally, these models 
can be used to denoise the trace ci ; this denoising step 
can be incorporated into the demixing step to improve 
performance (Pnevmatikakis et al., 2016).

Supervised learning methods have also been applied 
to the spike inference problem (Theis et al., 2016). 
Unlike the unsupervised methods reviewed above, 
supervised methods rely on training data, usually in 
the form of dual electrophysiological and imaging 
recordings in small neuron populations, which can 

be hard to obtain. If a good generative model of the 
data is available, however, then the model can be 
used to generate an unlimited amount of training 
data (Berens et al., 2018). The recent community 
benchmarking effort (Berens et al., 2018) found 
that current supervised and unsupervised learning 
algorithms perform similarly on the labeled datasets 
available at http://spikefinder.codeneuro.org/. On 
the other hand, Z. Wei (personal communication) 
investigated the impact of calcium indicator 
nonlinearities on downstream analyses of neural 
population activity, concluding that some caution 
is warranted when interpreting neural dynamics 
inferred from calcium imaging data.

The accuracy and temporal resolution of the 
recovered activity depend on several factors—
most critically, the imaging frame rate, SNR, and 
indicator dynamics (particularly the rise time and 
degree of nonlinearity of the indicator). Without 
side information, it is not possible to recover spike 
times at millisecond resolution, given standard 30 
Hz frame rates. However, Bayesian methods that 
incorporate prior information about spike timing 
(using information from the activity of other cells, 
or from external covariates such as stimulus or 
movement timing) can improve inference accuracy 
and temporal resolution beyond the original frame 
rate (Vogelstein et al., 2009; Deneux et al., 2016; 
Picardo et al., 2016; Aitchison et al., 2017).

Voltage imaging data will present some new challenges. 
In this context, we do not just care about recovering 
spike times; instead, we also wish to denoise and 
recover subthreshold voltage fluctuations. Thus, 
models that combine both sparse spiking effects with 
constraints on the smoothness of the subthreshold 
voltage will likely be critical. In addition, important 
tradeoffs between imaging frame rate, SNR, and the 
speed and brightness of the indicator will need to 
be optimized. For example, slower indicators may be 
brighter, and if deconvolution methods can improve 
the resulting temporal resolution, then using a slower 
indicator might be preferable. As in the demixing 
problem discussed earlier, we expect that an integrated 
computational imaging approach (in which we 
optimize jointly over the indicator, imaging approach, 
and computational deconvolution method) will lead 
to improved recovery of voltage signals.

Postprocessing and visualization
Several postprocessing steps have been implemented 
to check for missing or clearly nonneuronal 
components ai or ci in the output of the demixing 
step; for example, in some cases, it is useful to apply 
post hoc image processing methods to remove artifacts 
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from spatial components. These approaches can also 
be incorporated within the demixing loop to improve 
overall demixing performance.

As in any complex statistical analysis, it is important to 
visualize the outputs of the pipelines described above 
(Fig. 2). One basic but critical visualization is to simply 
view the raw data movie Y synchronized with and 
adjacent to corresponding movies of the components 
the pipeline has extracted from Y (Figs. 2A–D), along 
with the residual result of Y − AC – B (Fig. 2E). This 
visualization makes it easy to quickly identify poor 
motion correction, potential missing components, 
poor separation of background versus single-neuronal 
components, and other common artifacts.

Another useful visualization involves sorting the 
components ai and ci by brightness and then viewing 
each component individually. Typically the brightest 
output components will be of high quality, while the 
dimmest extracted components may be overly noisy 
or corrupted by artifacts. Quick visual inspection of 
the sorted components can determine a good value 
of the number of components to be retained (K in 
Eq. 1). Simple graphical user interfaces have been 
developed to aid in this procedure, but further effort 
in this direction would be useful.

Finally, in general, any software used for manual 
intervention and/or postprocessing should include 
an automatic logger to ensure full reproducibility of 
the analysis.

Registration across multiple sessions
Calcium imaging enables the monitoring of large 
neural populations over many different sessions across 
multiple days. Several packages offer semiautomated 
methods for registering neurons across multiple sessions 
(Kaifosh et al., 2014; Pachitariu et al., 2017; Sheintuch 
et al., 2017; Giovannucci et al., 2018). As in the 
demixing problem, ground-truth data for validating 
these methods are difficult to obtain; thus, the results 
of multisession alignment from challenging datasets 
(particularly one-photon imaging datasets with limited 
SNR or very large background signals) should be 
interpreted with caution (Katlowitz et al., 2018).

Software Implementations
A critical requirement for the adoption of formal 
reproducible methods is the existence of reliable, 
well-documented software that is scalable to the size 
of modern datasets. Available packages for automated 
and/or interactive analysis include SIMA (Kaifosh 
et al., 2014; Python); Suite2p (Pachitariu et al., 
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Figure 2. An example frame illustrating demixing on voltage imaging data. A, Detrended data Y. B, Denoised data Y. C, Extracted 
signals AC; each component i is assigned a unique color, and the intensity of each pixel at each time is determined by the corre-
sponding value of AC. D, Estimated background B (constrained to be temporally constant here). E, Residual Y − AC − B. Note the 
small scale of the residual result compared with the original signal. F, Noise removed in the denoising step.
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NOTES2017; MATLAB and Python); ABLE (Reynolds et 
al., 2017; MATLAB); SCALPEL (Segmentation, 
Clustering, and Lasso Penalties, by Petersen et al., 
2017; R); SamuROI (structured analysis of multiple 
user-defined regions of interest, by Rueckl et al., 
2017; Python); the toolbox of Romano et al. (2017) 
(MATLAB); CaImAn (Giovannucci et al., 2018; 
Python and MATLAB); MIN1PIPE (MINiscope 
1-photon imaging PIPEline, by Lu et al., 2018; 
MATLAB); and CNMF-E (constrained nonnegative 
matrix factorization for microendoscopic data, by 
Zhou et al., 2018; MATLAB). Most of the packages 
listed here focus on two-photon data; CNMF-E 
and MIN1PIPE can handle multiphoton data but 
are designed specifically for one-photon data. Of 
all these packages, at least CaImAn, CNMF-E, and 
Suite2p have attracted a critical mass of users and 
a community of developers that are continuing to 
support and improve the software.

Open Issues and Future Work
The methods described above are the first step in 
the analysis of datasets that are being acquired daily 
in hundreds of neuroscience labs. These pipelines 
represent a foundation on which our understanding 
of the nervous system is being built; therefore, it is 
absolutely critical that this foundation be as sturdy 
as possible. Although the state of the art in this 
field has progressed rapidly in the past several years, 
significant work remains to be done.

We have already mentioned several directions for 
future work, including:

• Better graphical user interfaces for visualization 
and analysis;

• Methods for motion correction that can demix 
nonnuclear-localized signals in small flexible 
moving animals;

• Better gold-standard demixing data;
• Improved generalized demixing methods to handle 

experiments in which we observe some linear 
projection W Y of the data Y in Equation 1; and

• Development of methods optimized to process 
voltage imaging and neurotransmitter release 
imaging data.

A number of additional directions remain open. 
For example, we expect to see further development 

of online, real-time-analysis approaches in the 
context of closed-loop experiments, building on the 
methods introduced in Giovannucci et al. (2017); 
the extension of these methods to handle single-
photon data with large background signals (as is 
typical in microendoscopic imaging) is an important 
next step. Scalable Bayesian methods for quantifying 
the reliability of each component output by the 
demixing pipeline would also be very valuable. 
A number of open analysis challenges remain 
regarding multimodal data, i.e., functional imaging 
data collected in conjunction with, for example, 
electrophysiological data, spatial transcriptomics 
measurements, electron microscopy (or other very 
large-scale anatomical imaging approaches), or 
spatiotemporal patterned optogenetic stimulation.

More broadly, we advocate continued efforts  
toward full analysis standardization and automation 
to enable widespread, routine data sharing and 
reproducibility. Large collaborative experimental 
efforts such as the International Brain Laboratory 
(2017) depend on these efforts, and we expect to 
see a number of large-scale projects with similar 
requirements in the near future.
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NOTESIntroduction
Despite dramatic improvements in in vivo optical 
reporters and modulators of neural activity over 
the past decade (Boyden et al., 2005; Chen et al., 
2013; Gong et al., 2014; Dana et al., 2016), imaging 
challenges still limit our ability to capture the activity 
of thousands of neurons across large brain regions in 
awake behaving organisms.

Here we will describe two very different approaches 
to high-speed optical imaging of fluorescent reporters, 
both of which enable imaging of large numbers of 
brain cells in real time, in some cases capturing the 
whole brain or nervous system of behaving organisms. 
The first approach, swept confocally aligned planar 
excitation (SCAPE) microscopy, is capable of cellular-
level imaging of ~1 × 1 × 0.4 mm fields of view (FOVs) 
at volumetric imaging speeds exceeding 50 volumes per 
second (VPS) (Bouchard et al., 2015). SCAPE can be 
used for in vivo microscopy in a diverse range of samples, 
from Drosophila melanogaster (fruit fly) larvae and 
adults, Danio rerio (zebrafish) larvae, and Caenorhabditis 
elegans (worms) to the intact cortex of awake behaving 
mice. SCAPE can also be used to image larger cleared 
and expanded tissue specimens at high speeds (Chung 
and Deisseroth, 2013; Chen et al., 2015). The second 
approach, wide-field optical mapping (WFOM), uses 
simple epifluorescence and diffuse reflectance imaging 
to capture larger-scale neural activity and brain 
hemodynamics across the dorsal surface of the cortex 
of awake behaving mice (Ma et al., 2016a,b).

Importantly, both imaging approaches offer sufficient 
signal-to-noise ratio (SNR) to capture interpretable 
data in real time. This enables observations of 
spontaneous behavior without the need to average 
over trials or tasks, thereby providing new views 
of the brain in real time in the context of ongoing 
behavior. The basic principles, capabilities, and 
limitations of these techniques are described below, 
along with novel applications we hope will provide 
new understanding of whole-brain activity.

SCAPE for High-Speed, Cellular-
Level Volumetric Microscopy in 
Functional Neuroimaging
Point scanning for fast volumetric 
microscopy
SCAPE is an approach to in vivo microscopy that 
departs from conventional point-scanning confocal 
and two-photon microscopy. Point-scanning methods 
form an image by scanning a point of focused laser 

light around, and measuring signal from, each point in 
turn (Fig. 1a). However, point scanning is reaching its 
speed limit for fast volumetric imaging owing to several 
constraints: (1) the speed limit of physically scanning 
a focused laser beam in three dimensions (3D) at high 
speeds, with 24 kHz line-scan-rate resonant scanners 
being the current upper limit; (2) the proportional 
decrease in per-pixel integration time, which is 
reaching fluorescence lifetime, laser repetition, and 
fast-detector sensitivity limits; and (3) the resulting 
exposure of tissues to high-power laser illumination, 
which is reaching photobleaching and thermal damage 
limits (Hillman et al., 2018). For example, point-
scanning a modest volume of 400 × 400 × 100 x–y–z 
voxels at 5 VPS would require scanners moving at 200 
kHz line-scan rates. The pixel detection rate would be  
80 MHz, equal to the pulse repetition rate of 
conventional Ti:Sapphire lasers used for two-photon 
microscopy, and it would provide a per-pixel integration 
time of 12 ns for single-photon applications. In 
contrast, the fluorescence lifetime of green fluorescent 
protein is between 1 and 4 ns (Pepperkok et al., 1999).

Advantages of light-sheet 
illumination for fast volumetric 
microscopy
Instead of point scanning, SCAPE uses light-sheet 
illumination—generating a plane of light within 
the tissue and imaging that plane onto a camera 
(Bouchard et al., 2015). Illuminating a whole plane 
at once, and acquiring an image using a camera, 
permits simultaneous detection of all pixels in parallel 
(Figs. 1b,c). This approach circumvents many of the 
limits described above by greatly increasing per-pixel 
integration time and reducing physical scanning rates.

A further advantage of light-sheet illumination is that 
light-sheet photons propagate along the direction of 
the light sheet, providing multiple opportunities to 
generate usable fluorescence along their path. This 
property also reduces the number of photons incident 
on tissue that is not being imaged at that moment 
in time (Huisken et al., 2004). In contrast, point-
scanning methods seek only to acquire fluorescence 
from a single location along the photons’ path (the 
high numerical aperture [NA] focal point), while 
illumination of the tissue above and below the plane 
of interest represents unwanted exposure (Figs. 1d,e). 
Imaging multiple planes to form a volume causes 
repeated exposure of the rest of the volume. Point 
scanning’s very short per-pixel integration times also 
require significantly more incident power to generate 
equivalent fluorescence signal. These effects can 
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NOTEScombine to produce substantial photobleaching and 
phototoxicity that limits the use of point scanning 
for fast, 3D live-cell imaging. In comparison, light-
sheet imaging’s more efficient use of excitation light, 
selective illumination of only the plane of interest, 
and longer integration times significantly reduce 
phototoxicity. (For a full model comparing parameters 
between approaches, see Hillman et al., 2018.)

SCAPE permits single-objective light-
sheet imaging at high speeds
Conventional light-sheet microscopy uses two 
separate orthogonal light paths for illumination and 
detection (Fig. 1b), a configuration that can restrict 
sample geometries and reduce imaging speeds owing 
to the need for synchrony between different scan 
paths (Huisken et al., 2004; Tomer et al., 2012; 
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Figure 1. Point-scanning versus conventional and oblique light-sheet geometries. a, Point-scanning confocal and two-photon 
microscopy illuminate tissue with a high-NA beam, forming a tight focus that is scanned in 3D to form a 3D image. b, Conventional 
light-sheet microscopy illuminates tissue using a plane of light, with a camera focused onto that plane to generate optical 
sectioning. To form an image, the light sheet and camera focal plane (or the sample itself) must be translated up and down so 
that the camera remains focused on the light sheet throughout. c, Oblique light-sheet microscopy (e.g., SCAPE) illuminates the 
tissue from its top surface using an oblique plane of light and collects emitted fluorescence back through the same objective lens. 
In SCAPE microscopy, volumetric data are acquired by scanning the light sheet from side to side using an approach that maintains 
the focus of the camera on the light sheet as it scans (Fig. 2a). d and e illustrate the main differences between point-scanning 
and light-sheet approaches, which provide significant signal-to-noise versus phototoxicity benefits: (1) High-NA point scanning 
reexposes tissue above and below the plane of interest for each plane imaged within the volume, whereas light-sheet microscopy 
restricts illumination to the plane being imaged so that volumetric imaging does not reexpose the whole volume for each plane; 
(2) Point scanning seeks to only detect photons from fluorescent interactions that occur at the focal point, so interactions above 
and below the plane provide only nuisance background and additional photodamage. Light sheets are generated by photons 
traveling in their propagation direction, affording multiple opportunities for excitation photons to interact along their path. As a 
result, light-sheet microscopy requires fewer photons to enter tissue per fluorescent photon detected. Modified with permission 
from Hillman et al. (2018), Figs. 1, 2. Copyright 2018, Elsevier.
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NOTESAhrens et al., 2013). In contrast, SCAPE uses a 
single-objective lens at the sample, illuminating the 
sample with an oblique light sheet and detecting 
fluorescence back through the same objective lens 
(Fig. 1c). This single-objective configuration enables 
investigators to image diverse moving and intact 
samples in a more conventional upright or inverted 
“epifluorescence”-type geometry while delivering the 
benefits of light-sheet imaging over point scanning.

As shown in Figure 2a, to capture the fluorescence 
generated by the oblique light sheet, SCAPE uses 
image rotation to focus the oblique plane of the 
sheet onto a camera (Dunsby, 2008). To generate a 
3D image, SCAPE sweeps this oblique sheet laterally 
across tissue using a single galvanometer (galvo) 
mirror positioned within the light path. The same 
mirror descans the returning light, which enables the 
system to maintain alignment between the stationary 
focal plane of the camera and the moving plane 
illuminated by the oblique light sheet in the sample. 
The only moving part of SCAPE is the galvo mirror, 
which moves at the volume rate (e.g., only 5–100 
lines/s for 5–100 VPS). This single-scanner approach 
removes speed limitations of conventional two-path 
light-sheet configurations and requires no physical 
motion of the objective lens or sample to form a high-
speed 3D image. SCAPE can thus image unmounted, 
freely moving, or sensitive small samples, as well as the 
brain of an awake behaving mouse at high volumetric 
imaging speeds. The primary limitations on imaging 
speed for SCAPE microscopy are the speed of the 
camera and the fluorescence intensity of the sample in 
relation to its photobleaching sensitivity.

Applications of SCAPE microscopy
SCAPE has been applied to imaging a wide range of 
awake behaving organisms, such as the freely crawling 
Drosophila larva, the whole brain of behaving adult 
Drosophila, zebrafish brain and heart, C. elegans worms, 
as well as the cortex of awake mice. Two examples of 
high-speed functional brain imaging using SCAPE are 
shown in Figures 2b,c. Figure 2b shows spontaneous 
calcium (GCaMP6f) activity in apical dendrites from 
layer 5 neurons in the awake mouse barrel cortex 
acquired at 10 VPS to a depth of ~150 μm using 
488 nm excitation. Raw fluorescence intensity data 
extracted from 2 × 2 × 2 voxel regions along individual 
dendrites over a 60 s time period is also shown. This 
dataset highlights SCAPE’s ability to capture all 
activity in a 3D FOV >1 mm wide, to resolve fine 
structures in the dendritic branches, and to display 
good SNR and minimal photobleaching over 1 min 
of acquisition. These data also demonstrate significant 
improvement over imaging the same preparation 

using our first SCAPE prototype (Bouchard et al., 
2015). Figure 2c shows SCAPE imaging of nuclear-
localized GCaMP6f in neurons in the brain of a live 
zebrafish larva. SCAPE permits imaging without the 
need to translate the objective lens or the sample, thus 
reducing disturbance. The fact that SCAPE’s oblique 
light sheet does not need to pass through the fish’s eye 
is also a major advantage, while the simple mounting 
of the fish permits simple presentation of stimuli (e.g., 
visual patterns) as well as surveillance of the animal, 
including recording swim efforts or simultaneous 
electrode recordings. In this sample, data were acquired 
at 6 VPS for >1 h without evidence of phototoxicity 
(e.g., marked decreases in neural activity).

These examples demonstrate that SCAPE delivers 
the significant benefits of light-sheet imaging: reduced 
photodamage and improved SNR. These benefits 
combine with the ability to acquire volumetric 
images of unmounted, intact, behaving or freely 
moving samples at sufficiently high speeds to visualize 
cellular-level functional activity over large FOVs.

Limitations of SCAPE microscopy
As with all microscopes, SCAPE’s imaging depth is 
ultimately limited by light scattering and absorption 
in living tissues. In cleared tissues, SCAPE’s depth 
of field can be >500 μm using a 20×, 1.0 NA 
objective, and it can image as deep into the tissue as 
the objective’s working distance will allow. In more 
scattering samples, such as the mouse brain, this range 
can decrease to 250 μm using 488 nm excitation. 
Extended depths can be achieved by using longer-
wavelength and two-photon excitation, although at 
increasing depths, the scattering of fluorescent light 
generated by the sheet will ultimately limit resolution 
and sensitivity at greater depths.

Compared with high-NA confocal and conventional 
light-sheet imaging using high-NA detection, SCAPE’s 
resolution is currently limited by its inability to capture 
all the light from the full pupil of the primary objective 
lens. The other limit on its resolution is sample density, 
which is a function of the speed of available cameras. 
Today, standard scientific complementary metal-oxide-
semiconductor CMOS (sCMOS) cameras can image 
≤400 MHz pixel rates, but frame rates are dictated by 
the number of rows being read from the camera. On a 
standard sCMOS camera, 80 rows (depths) and the full 
chip width of >2000 columns (y-dimension) can be read 
at ~2400 Hz, enabling 240 planes in the x-direction to 
be read at 10 VPS. However, as faster cameras and more 
efficient fluorophores are developed, higher sampling 
rates are permitting volumetric imaging speeds of >100 
VPS with sampling densities of <0.6 μm.
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NOTESZooming Out: WFOM of the 
Awake Mouse Brain
Sacrificing cellular resolution for 
wider-field brain imaging
Although SCAPE can provide cellular-level imaging 
of functional dynamics over significant volumes of 
the rodent cortex (Fig. 2b), current implementations 
are unable to capture activity across bilateral 
mammalian cortex. However, the advent of robust 
genetically encoded calcium indicators (Akerboom 

et al., 2012; Chen et al., 2013; Dana et al., 2016) 
provides the opportunity for much simpler high-
speed capture of pancortical cellular activity—if the 
user is willing to sacrifice resolving the activity of 
every individual neuron.

Classical neuroscience research has long focused 
on the activity of individual cells as the key to 
understanding circuits, but other neuroimaging 
modalities, such as functional magnetic resonance 
imaging (fMRI), electroencephalography (EEG),  
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Figure 2. SCAPE microscopy for high-speed 3D neuroimaging. a, Optical layout of a typical SCAPE system permitting oblique 
sheet scanning through a stationary, single-objective lens. Insets, Sample geometries for brain imaging in zebrafish larvae (left) and 
awake behaving mouse brain (right). b, SCAPE data acquired at 10 VPS (140 × 750 × 149 x–y–z voxels = 372 × 1032 × 174 μm  
FOV) in an awake behaving mouse capturing spontaneous activity in apical dendrites of layer 5 neurons in whisker barrel cortex 
via GCaMP6f (AAV9.Syn.GCaMP6f). Methods used are similar to those of Bouchard et al. (2015) but with improved resolution, 
penetration depth, and SNR compared with our first demonstration. b(i–ii), Maximum-intensity views from the top (x–y) and side 
(y–z) are shown for activity occurring between 22 s and 28 s (colors denote time). b(iii), Raw fluorescence time courses from 
the regions of interest indicated are shown as raw data, showing excellent SNR, minimal photobleaching over 60 s, and the 
ability to probe firing dynamics along individual dendrites during a single spontaneous event. c, Imaging of spontaneous activity 
in the whole brain of larval zebrafish: data were acquired at 6 VPS over a 820 × 380 × 260 µm FOV. (i) Volume rendering of a 
time-maximum-intensity projection taken over all 360 time points of the 1 min run. Inset, Time series extracted from six neurons 
at six depth planes within the fish as indicated. (ii) A time-encoded color projection of three depth planes showing spontaneous 
activity over a range of brain regions. Insets, ~2× close-ups of indicated regions. Seven days past fertilization HuC:H2B–GCaMP6f 
fish obtained from Janelia Farm. Scale bars: b(ii), 100 μm; c(ii), 100 μm; inset, 50 μm. Reprinted with permission from Hillman et 
al. (2018), Fig. 4. Copyright 2018, Elsevier.

a)
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NOTESmagnetoencephalography (MEG), and electro-
corticography (ECoG), have taught us much 
about the brain from larger-scale representations of 
brainwide activity. The benefit of imaging genetically 
encoded fluorescent sensors is that the expression 
of indicators can be highly cell-specific, providing 
sensitivity to a particular cell type or chemical signal 
without necessarily requiring high spatial resolution. 
Beyond calcium-sensitive fluorophores, newer probes 
are also providing sensitivity to a wider array of 
neurotransmitters, neuromodulators, metabolites, 
and mediators of cellular signaling, including voltage 
(Shibuki et al., 2003; St-Pierre et al., 2014; Gong 
et al., 2015; Kozberg et al., 2016; Machler et al., 
2016; Patriarchi et al., 2018). At the same time, new 
spectral variants are beginning to permit spectral 
encoding to report the activity of multiple cell 
types or chemical signatures in parallel (Dana et al., 
2016). Capturing this highly specific activity in real 
time, across the bilateral cortex of awake behaving 
mammals, is increasingly providing a new view of 
brainwide, ensemble-scale activity that may not 
even be apparent when measuring a small number of 
individual cells (Vanni and Murphy, 2014; Ma et al., 
2016a; Allen et al., 2017).

There is a wide range of approaches to this kind of 
imaging, of which WFOM is one (Fig. 3a) (Bouchard 
et al., 2009; Ma et al., 2016b). However, all methods 
require the following essential elements:

(1) A method for optically accessing the cortex. 
This could include thinning the skull; clearing 
the skull with index-matching compounds; 
removing part of the skull and replacing it with a 
glass window; or retracting the scalp and imaging 
through intact skull (although this obscures 
visualization of the cortical surface) (Figs. 3b,c).

(2) A light source capable of exciting the fluorophore 
at its excitation wavelength, along with a 
camera and an emission filter to block excitation 
light. High-power, stable light emitting diodes 
(LEDs) (Fig. 3a) provide higher spectral density 
than filtered white-light sources (Dunn et al., 
2003; Bouchard et al., 2009). Modern sCMOS 
cameras are well suited to imaging fluorescence 
at high frame rates.

(3) An approach to compensating for the effects 
of hemoglobin absorption on the detected 
fluorescence signal.

Hemodynamic correction in WFOM
The problem of hemodynamic contamination in wide-
field fluorescence imaging is a key issue that cannot be 
ignored and has been addressed in a range of ways by 
different groups (Xu et al., 2015; Murphy et al., 2016; 
Ma et al., 2016c; Allen et al., 2017; Rossi et al., 2017). 
Changes in neural activity in the brain are generally 
accompanied by local increases in blood flow, which 
transiently increase both the local concentration 
and oxygenation state of hemoglobin in the tissue 
(Hillman, 2014). Hemoglobin is a strong light 
absorber that also has oxygenation-dependent shifts 
in its absorption spectrum. As Figure 3d illustrates, 
wide-field measurements of fluorescence require that 
excitation light (I1(λex), e.g., blue light for GCaMP) 
entering the tissue reaches cells expressing fluorescent 
markers. These fluorophores convert this incident light 
to longer-wavelength light (I1(λem)) (e.g., green light), 
which must then travel out of the tissue and be detected 
by a camera. In general, the path lengths (X(λex) and 
X(λem)) traveled by both excitation and emission 
light are much farther for wide-field measurements 
than for methods such as confocal microscopy, which 
effectively constrain the distance traveled by detected 
photons. To understand these effects, we can use 
the Beer–Lambert law, which describes how light is 
attenuated by an absorber (Fig. 3d):

I2 (λ)=I1 (λ) e–μa (λ)X(λ) ,    (1)

where μa(λ) is the wavelength-dependent absorption 
coefficient of the tissue and is dominated by oxy-
hemoglobin (HbO) and deoxy-hemoglobin (HbR) 
absorption at visible wavelengths (units of mm–1), as 
given by:

μa (λ) = cHbOεHbO (λ) + cHbRεHbR (λ). (2)

In Equation 2, c and ε are the concentrations and 
molar extinction coefficients, respectively, of HbO 
and HbR. Thus, detected wide-field fluorescence 
signals (I2(λem)) will represent the true fluorescence F, 
contaminated by the effects of time-varying changes 
in hemoglobin concentration and oxygenation; the 
latter will differentially affect the intensity of blue 
excitation light reaching the fluorophores and the 
green light emitted by the fluorophores and reaching 
the camera. We can derive the following equations 
from Figure 3d (now including variations over time t):

I2 (t,λex) = I1 (t,λex) e¯μa (t,λex)X(λex)  (3)

I1 (t,λem) = I2 (t,λex)F(t)  (4)

I2 (t,λem) = I1 (t,λem) e¯μa (t,λem)X(λem)  (5)
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Figure 3. WFOM of pancortical activity in awake behaving mice. a, Our preferred configuration in which three LEDs are positioned 
to illuminate the cortex while a fast camera is used to image it. The LEDs are strobed in synchrony with sequential camera frames 
to provide three interleaved images of fluorescence and diffuse reflectance. b, The WFOM head plate and thinned-skull prepa-
ration provide optical access to almost the entire dorsal surface of the cortex (c) while allowing quick head fixation and release. 
Scale bar, 1 mm. d, Paths taken by light in a wide-field geometry to and from a fluorophore. e, Wavelength-dependent absorption 
spectra of HbO and HbR (log-scale) and the excitation and emission spectra of GCaMP (linear scale). f, Detected GCaMP fluores-
cence signal before and after hemodynamic correction along with total hemoglobin (HbT) from reflectance measurements, all 
taken from the whisker barrel (i) of an awake mouse during a 5 s tactile whisker stimulus. Before correction, the increasing 
absorption of HbT during functional hyperemia causes a marked decrease in detected fluorescence. g, A control measurement in 
which multiunit electrophysiology was acquired in the same location as GCaMP3 fluorescence. Convolving spikes with a putative 
calcium indicator gamma-function response (h) yields a signal that more closely matches measured fluorescence after hemody-
namic correction. i, Proper hemodynamic correction further removes vascular patterns from measured fluorescence.
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NOTESSubstituting into Equation 3, we get the following:

I2 (t,λem) = F(t)I1 (t,λex)e¯(μa (t,λex)X(λex)+μa (t,λem)X(λem)) (6)

F(t) = I2 (t,λem)
I1 (t,λex) e(μa (t,λex)X(λex)+μa (t,λem)X(λem)) (7)

Importantly, this physical explanation of the origins 
of fluorescence contamination indicates that signal 
correction should be multiplicative rather than 
additive, and thus will not diminish for fluorophores 
or light sources with higher brightness. It is also 
important to note that hemodynamic changes will 
likely be casually coupled to neural dynamics and will 
thus not be separable via averaging multiple trials.

In WFOM, our approach to hemodynamic correction 
is to make additional reflectance measurements that 
estimate the spatiotemporally varying absorption 
contaminating fluorescence images. Measuring 
hemoglobin dynamics via diffuse reflectance is a 
well-established technique (Dunn et al., 2003; 
Martin et al., 2006; Bouchard et al., 2009). In 
WFOM, in addition, interlaced images are acquired 
with the same camera (at ~75 Hz) while the cortex 
is illuminated by two additional wavelengths of light. 
For GCaMP, reflectance at green (~530 nm) and 
red (~630 nm) wavelengths are taken, enabling all 
light to pass through a fluorescence 500 nm emission 
filter to the camera without moving parts (Fig. 3e). 
For correction, these measurements can be used to 
estimate the time-varying concentrations of HbO 
and HbR derived from the red and green reflectance 
measurements (derived using Eq. 2), which can then 
be used to predict the spatiotemporal attenuation of 
blue light that would correspond to these absorption 
changes. Similarly, calculating the attenuation of 
green emission light can be done using the relevant 
emission spectrum of the fluorophore rather than 
the same wavelength band of green light used for 
the diffuse reflectance measurement. By combining 
these measurements with estimates of path lengths 
Xex, Xem, XRgreen, and XRred, an estimate of e(μa (t,λex)

Xex(λ)+μa (t,λem)X(λem)) can be derived and simply divided 
from measured fluorescence at each pixel to yield 
corrected data (Ma et al., 2016c).

Although no WFOM correction can be 100% exact, 
this approach follows the expected physical properties 
of attenuation of excitation and emission light and 
does not use subtraction or rely on regression to 
remove contamination. This approach also provides 
insights into the relationship between neural activity 
and blood flow (neurovascular coupling), which is 
relevant to understanding fMRI data which records 
signals corresponding to changes in the concentrations 
of HbR as a surrogate for neural activity (Ma et al., 
2016a).

Applications of WFOM
Despite the need for careful hemodynamic 
correction, the simplicity of collecting high-speed, 
wide-field data on awake behaving mice enables 
researchers to perform a wide range of complex 
experiments that would otherwise be beyond the 
reach of even fMRI experiments. For example, 
WFOM enables high-speed, simultaneous imaging 
of both neural activity and brain hemodynamics 
over the entire dorsal cortical surface of the mouse 
cortex. During imaging, the mouse’s behavior can 
be observed and tasks can be performed, stimuli 
presented, or perturbations such as optogenetics 
and drugs administered. The technique is also well 
suited to the longitudinal characterization of disease 
progression, treatment response, and recovery (e.g., 
in Alzheimer’s disease, brain cancer, and stroke). 
Here, WFOM provides simultaneous assessment of 
effects on behavior, bilateral neural representations of 
behavior, and associated alterations in hemodynamic 
representations of neural activity.

Summary
In summary, a range of new methodologies for optical 
imaging are leveraging the power of new optical 
indicators of cellular function to capture real-time 
multimodal activity across more and more brain 
regions in parallel. These techniques are providing 
new views of the awake behaving brain—from flies 
to mice—and promise important new insights into 
how whole-brain, real-time activity drives, shapes, 
and represents behavior. 
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